ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRODINGER EQUATION

被引:4
作者
Wu, Yuan [1 ]
Yuan, Xiaoping [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2020年 / 10卷 / 02期
基金
中国国家自然科学基金;
关键词
KAM theory; almost periodic solution; Gevrey space; fractional nonlinear Schrodinger equation; ALMOST-PERIODIC SOLUTIONS; LINEAR SCHRODINGER; INVARIANT TORI; PERTURBATIONS; CONSTRUCTION;
D O I
10.11948/20190292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study fractional nonlinear Schrodinger equation (FNLS) with periodic boundary condition iu(t) = -(-Delta)(s0)u - V * u - epsilon f(x)vertical bar u vertical bar(4)u, x is an element of T, t is an element of R, s(0) is an element of (1/2, 1), (0.1) where (-Delta)(s0) is the Riesz fractional differentiation defined in [21] and V* is the Fourier multiplier defined by (V * u) over cap (n) = V-n(u) over cap (n), V-n is an element of [-1, 1], and f(x) is Gevrey smooth. We prove that for 0 <= vertical bar epsilon vertical bar << 1 and appropriate V, the equation (0.1) admits a full dimensional KAM torus in the Gevrey space satisfying 1/2e(-rn theta) <= vertical bar q(n)vertical bar <= 2e(-rn theta), theta is an element of (0, 1), which generalizes the results given by [8-10] to fractional nonlinear Schrodinger equation.
引用
收藏
页码:771 / 794
页数:24
相关论文
共 50 条
[31]   Explicit high-order structure-preserving algorithms for the two-dimensional fractional nonlinear Schrodinger equation [J].
Fu, Yayun ;
Shi, Yanhua ;
Zhao, Yanmin .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (05) :877-894
[32]   Energy preserving relaxation method for space-fractional nonlinear Schrodinger equation [J].
Cheng, Bianru ;
Wang, Dongling ;
Yang, Wei .
APPLIED NUMERICAL MATHEMATICS, 2020, 152 :480-498
[33]   MULTI-BUMP POSITIVE SOLUTIONS OF A FRACTIONAL NONLINEAR SCHRODINGER EQUATION IN RN [J].
Liu, Weiming ;
Gan, Lu .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (02) :413-428
[34]   Existence and stability of standing waves for nonlinear fractional Schrodinger equations with Hartree type nonlinearity [J].
Wu, Dan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) :530-542
[35]   Asymptotics for the fractional nonlinear Schrodinger equation with 2 &lt; α &lt; 5/2 [J].
Hayashi, Nakao ;
Mendez-Navarro, Jesus A. ;
Naumkin, Pavel I. .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (03)
[36]   On instability of standing waves for the mass-supercritical fractional nonlinear Schrodinger equation [J].
Van Duong Dinh .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02)
[37]   KAM theorems for nonlinear higher dimensional Schrödinger equation systems in three different ways [J].
Chang, Ningning ;
Sun, Yingnan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 150
[38]   Petviashvili Method for the Fractional Schrodinger Equation [J].
Bayindir, Cihan ;
Farazande, Sofi ;
Altintas, Azmi Ali ;
Ozaydin, Fatih .
FRACTAL AND FRACTIONAL, 2023, 7 (01)
[39]   Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrodinger equation [J].
Duo, Siwei ;
Zhang, Yanzhi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) :2257-2271
[40]   Dynamics of Plane Waves in the Fractional Nonlinear Schrodinger Equation with Long-Range Dispersion [J].
Duo, Siwei ;
Lakoba, Taras I. ;
Zhang, Yanzhi .
SYMMETRY-BASEL, 2021, 13 (08)