ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRODINGER EQUATION

被引:3
|
作者
Wu, Yuan [1 ]
Yuan, Xiaoping [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2020年 / 10卷 / 02期
基金
中国国家自然科学基金;
关键词
KAM theory; almost periodic solution; Gevrey space; fractional nonlinear Schrodinger equation; ALMOST-PERIODIC SOLUTIONS; LINEAR SCHRODINGER; INVARIANT TORI; PERTURBATIONS; CONSTRUCTION;
D O I
10.11948/20190292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study fractional nonlinear Schrodinger equation (FNLS) with periodic boundary condition iu(t) = -(-Delta)(s0)u - V * u - epsilon f(x)vertical bar u vertical bar(4)u, x is an element of T, t is an element of R, s(0) is an element of (1/2, 1), (0.1) where (-Delta)(s0) is the Riesz fractional differentiation defined in [21] and V* is the Fourier multiplier defined by (V * u) over cap (n) = V-n(u) over cap (n), V-n is an element of [-1, 1], and f(x) is Gevrey smooth. We prove that for 0 <= vertical bar epsilon vertical bar << 1 and appropriate V, the equation (0.1) admits a full dimensional KAM torus in the Gevrey space satisfying 1/2e(-rn theta) <= vertical bar q(n)vertical bar <= 2e(-rn theta), theta is an element of (0, 1), which generalizes the results given by [8-10] to fractional nonlinear Schrodinger equation.
引用
收藏
页码:771 / 794
页数:24
相关论文
共 50 条
  • [1] ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR NONLINEAR SCHRODINGER EQUATION
    Cong, Hongzi
    Mi, Lufang
    Shi, Yunfeng
    Wu, Yuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6599 - 6630
  • [2] The existence of full dimensional KAM tori for nonlinear Schrodinger equation
    Cong, Hongzi
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 671 - 719
  • [3] The stability of full dimensional KAM tori for nonlinear Schrodinger equation
    Cong, Hongzi
    Liu, Jianjun
    Shi, Yunfeng
    Yuan, Xiaoping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4504 - 4563
  • [4] Existence of positive solutions with peaks on a Clifford torus for a fractional nonlinear Schrodinger equation
    Liu, Weiming
    Gan, Lu
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (09) : 1731 - 1748
  • [5] KAM for the nonlinear Schrodinger equation
    Eliasson, L. Hakan
    Kuksin, Sergei B.
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 371 - 435
  • [6] The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation
    Cong, Hongzi
    Yuan, Xiaoping
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03): : 759 - 786
  • [7] Stability of KAM Tori for Nonlinear Schrodinger Equation
    Cong, Hongzi
    Liu, Jianjun
    Yuan, Xiaoping
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 239 (1134) : 1 - +
  • [8] A KAM Theorem for Higher Dimensional Forced Nonlinear Schrodinger Equations
    Xue, Shuaishuai
    Geng, Jiansheng
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (03) : 979 - 1010
  • [9] KAM THEORY FOR A NONLINEAR SCHRODINGER EQUATION WITH ALMOST-PERIODIC FORCING
    Rui, Jie
    Zhu, Sixue
    Zhang, Tingting
    Zhang, Min
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [10] An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrodinger equation
    Geng, Jiansheng
    Xu, Xindong
    You, Jiangong
    ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5361 - 5402