Construction of enzyme-encapsulated fibermats from the cross-linkable copolymers poly(acrylamide)-co-poly(diacetone acrylamide) with the bi-functional cross-linker, adipic acid dihydrazide

被引:12
作者
Ido, Yuya [1 ]
Macon, Anthony L. B. [2 ]
Iguchi, Makito [1 ]
Ozeki, Yuto [1 ]
Koeda, Shuhei [1 ]
Obata, Akiko [1 ]
Kasuga, Toshihiro [1 ]
Mizuno, Toshihisa [1 ]
机构
[1] Nagoya Inst Technol, Grad Sch Engn, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
[2] Nagoya Inst Technol, Frontier Res Inst Mat Sci, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
关键词
Fibermat; Electrospinning; Bioorthogonal reaction; Enzyme; Hydrolysis; PROTEIN; IMMOBILIZATION; POLYMERIZATION; CHYMOTRYPSIN; RESOLUTION; STABILITY; GAMMA; PH;
D O I
10.1016/j.polymer.2017.10.057
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Herein, we describe the successful construction of novel electrospun fibermats from the cross-linkable copolymer poly (acrylamide)-co-poly (diacetone acrylamide) (PAM-co-PDAAM) with the molar ratio of acrylamide and diacetone acrylamide units 8:2 (PAM-co-PDAAM(8:2)) by in situ cross-linking during electrospinning with the bifunctional cross-linker adipic dihydrazide (ADH). As the cross-linking reactions between the ketone groups in PAM-co-PDAAM(8:2) and the hydrazide groups in ADH (in pH 6-8 aqueous buffer) is one of the bio-orthogonal reactions that are inert for various functional groups in biomacromolecules, stable encapsulation of green fluorescent protein and alpha-chymotrypsin at the inside of constituent nanofibers was successfully achieved without losing the original biological activities. Aqueous buffer is the only solvent through all process of fibermat construction, and combination of bioorthogonal reactions is optimum for the construction of fibermats that encapsulate biomacromolecules. The examples presented in this study should provide fascinating insight for future biomacromolecule-encapsulated fibermat research. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:342 / 352
页数:11
相关论文
共 32 条
[1]  
Baria M.P., 2014, J PHYS CHEM BIOPHYS, V4, P137
[2]  
Beg AE, 1984, J CHEM SOC PAKISTAN, V6, P55
[3]   Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function [J].
Bettinger, Christopher J. ;
Langer, Robert ;
Borenstein, Jeffrey T. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (30) :5406-5415
[4]   THE BOWMAN-BIRK INHIBITOR - TRYPSIN-INHIBITOR AND CHYMOTRYPSIN-INHIBITOR FROM SOYBEANS [J].
BIRK, Y .
INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH, 1985, 25 (02) :113-131
[5]   Mechanically Modulating the Photophysical Properties of Fluorescent Protein Biocomposites for Ratio- and Intensiometric Sensors [J].
Brantley, Johnathan N. ;
Bailey, Constance B. ;
Cannon, Joe R. ;
Clark, Katie A. ;
Vanden Bout, David A. ;
Brodbelt, Jennifer S. ;
Keatinge-Clay, Adrian T. ;
Bielawski, Christopher W. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (20) :5088-5092
[6]   THE PHYSICAL AND FUNCTIONAL-BEHAVIOR OF CAPTURE ANTIBODIES ADSORBED ON POLYSTYRENE [J].
BUTLER, JE ;
NI, L ;
NESSLER, R ;
JOSHI, KS ;
SUTER, M ;
ROSENBERG, B ;
CHANG, J ;
BROWN, WR ;
CANTARERO, LA .
JOURNAL OF IMMUNOLOGICAL METHODS, 1992, 150 (1-2) :77-90
[7]   REFINED CRYSTAL-STRUCTURE OF GAMMA-CHYMOTRYPSIN AT 1.9 A RESOLUTION - COMPARISON WITH OTHER PANCREATIC SERINE PROTEASES [J].
COHEN, GH ;
SILVERTON, EW ;
DAVIES, DR .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 148 (04) :449-479
[8]   Ab initio emulsion polymerization by RAFT-controlled self-assembly [J].
Ferguson, CJ ;
Hughes, RJ ;
Nguyen, D ;
Pham, BTT ;
Gilbert, RG ;
Serelis, AK ;
Such, CH ;
Hawkett, BS .
MACROMOLECULES, 2005, 38 (06) :2191-2204
[9]   CONVERTING TRYPSIN TO CHYMOTRYPSIN - THE ROLE OF SURFACE LOOPS [J].
HEDSTROM, L ;
SZILAGYI, L ;
RUTTER, WJ .
SCIENCE, 1992, 255 (5049) :1249-1253
[10]   Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning [J].
Huang, ZM ;
He, CL ;
Yang, AZ ;
Zhang, YZ ;
Hang, XJ ;
Yin, JL ;
Wu, QS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 77A (01) :169-179