Counting maximal cycles in binary matroids

被引:2
|
作者
Hoffmann, P [1 ]
机构
[1] UNIV COLOGNE,INST MATH,D-50931 COLOGNE,GERMANY
关键词
D O I
10.1016/0012-365X(95)00240-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that each binary matroid contains an odd number of maximal cycles and, as a result of this, that each element of an Eulerian binary matroid is contained in an odd number of circuits.
引用
收藏
页码:291 / 292
页数:2
相关论文
共 50 条
  • [1] MASTER POLYTOPES FOR CYCLES OF BINARY MATROIDS
    GROTSCHEL, M
    TRUEMPER, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 : 523 - 540
  • [2] DECOMPOSITION AND OPTIMIZATION OVER CYCLES IN BINARY MATROIDS
    GROTSCHEL, M
    TRUEMPER, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (03) : 306 - 337
  • [3] A counting lemma for binary matroids and applications to extremal problems
    Luo, Sammy
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 : 329 - 359
  • [4] Counting 2-connected deletion-minors of binary matroids
    Jackson, Bill
    DISCRETE MATHEMATICS, 2013, 313 (11) : 1262 - 1266
  • [5] A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs
    João Gouveia
    Monique Laurent
    Pablo A. Parrilo
    Rekha Thomas
    Mathematical Programming, 2012, 133 : 203 - 225
  • [6] A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs
    Gouveia, Joao
    Laurent, Monique
    Parrilo, Pablo A.
    Thomas, Rekha
    MATHEMATICAL PROGRAMMING, 2012, 133 (1-2) : 203 - 225
  • [7] MAXIMAL EVEN MATROIDS
    NISHIZEKI, T
    ASANO, T
    SAITO, N
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1977, 60 (02): : 60 - 66
  • [8] ON BINARY MATROIDS NOT ISOMORPHIC TO THEIR BASE MATROIDS
    Maffioli, F.
    Salvi, N. Zagaglia
    ARS COMBINATORIA, 2013, 109 : 247 - 256
  • [9] Maximal Sidon sets and matroids
    Dias da Silva, J. A.
    Nathanson, Melvyn B.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4489 - 4494
  • [10] Counting bases of representable matroids
    Snook, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):