The Leavitt path algebra of a graph

被引:272
作者
Abrams, G [1 ]
Pino, GA
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80933 USA
[2] Univ Malaga, Dept Algebra Geometria & Topol, E-29071 Malaga, Spain
关键词
path algebra; Leavitt algebra; Cuntz-Krieger C*-algebra;
D O I
10.1016/j.jalgebra.2005.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any row-finite graph E and any field K we construct the Leavitt path algebra L (E) having coefficients in K. When K is the field of complex numbers, then L(E) is the algebraic analog of the Cuntz-Krieger algebra C*(E) described in [I. Raeburn, Graph algebras, in: CBMS Reg. Conf. Set. Math., vol. 103, Amer. Math. Soc., 2005]. The matrix rings M-n (K) and the Leavitt algebras L (1, n) appear as algebras of the form L(E) for various graphs E. In our main result, we give necessary and sufficient conditions on E which imply that L(E) is simple. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:319 / 334
页数:16
相关论文
共 9 条
[1]   Fractional skew monoid rings [J].
Ara, P ;
González-Barroso, MA ;
Goodearl, KR ;
Pardo, E .
JOURNAL OF ALGEBRA, 2004, 278 (01) :104-126
[2]  
Bates T., 2000, NEW YORK J MATH, V6, P307
[4]   SIMPLE CSTAR-ALGEBRAS GENERATED BY ISOMETRIES [J].
CUNTZ, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 57 (02) :173-185
[5]   Cuntz-Krieger algebras of directed graphs [J].
Kumjian, A ;
Pask, D ;
Raeburn, I .
PACIFIC JOURNAL OF MATHEMATICS, 1998, 184 (01) :161-174
[6]   MODULE TYPE OF HOMOMORPHIC IMAGES [J].
LEAVITT, WG .
DUKE MATHEMATICAL JOURNAL, 1965, 32 (02) :305-&
[7]  
LEAVITT WG, 1962, T AM MATH SOC, V42, P113
[8]   Cuntz-Krieger algebras of infinite graphs and matrices [J].
Raeburn, I ;
Szymanski, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (01) :39-59
[9]  
RAEBURN I., 2005, CBMS REGIONAL C SER, V103