Scaling exponents for a monkey on a tree: Fractal dimensions of randomly branched polymers

被引:6
|
作者
Janssen, Hans-Karl [1 ]
Stenull, Olaf [2 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
[2] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 05期
关键词
FIELD-THEORY; LATTICE ANIMALS; CRITICAL-BEHAVIOR; RENORMALIZATION; DIFFUSION; REGULARIZATION; SIMULATIONS; STATISTICS; OPERATION; CLUSTERS;
D O I
10.1103/PhysRevE.85.051126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study asymptotic properties of diffusion and other transport processes (including self-avoiding walks and electrical conduction) on large, randomly branched polymers using renormalized dynamical field theory. We focus on the swollen phase and the collapse transition, where loops in the polymers are irrelevant. Here the asymptotic statistics of the polymers is that of lattice trees, and diffusion on them is reminiscent of the climbing of a monkey on a tree. We calculate a set of universal scaling exponents including the diffusion exponent and the fractal dimension of the minimal path to two-loop order and, where available, compare them to numerical results.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fractal dimension of randomly branched polymers in a good solvent
    Ba, XW
    Zhang, SW
    Wang, HJ
    Wang, SJ
    Han, YH
    CHINESE PHYSICS LETTERS, 2002, 19 (08) : 1135 - 1138
  • [2] RANDOMLY BRANCHED POLYMERS
    DAOUD, M
    CANADIAN JOURNAL OF PHYSICS, 1990, 68 (09) : 1094 - 1098
  • [3] SCALING THEORY FOR MIXTURES OF RANDOMLY BRANCHED AND LINEAR-POLYMERS IN THE MELT
    ROBY, F
    JOANNY, JF
    MACROMOLECULES, 1991, 24 (08) : 2060 - 2067
  • [4] CANCELLATION EXPONENTS AND FRACTAL SCALING
    BERTOZZI, AL
    CHHABRA, AB
    PHYSICAL REVIEW E, 1994, 49 (05): : 4716 - 4719
  • [5] Rheology of randomly branched polymers
    Colby, RH
    Lusignan, CP
    Janzen, J
    ANTEC 2000: SOCIETY OF PLASTICS ENGINEERS TECHNICAL PAPERS, CONFERENCE PROCEEDINGS, VOLS I-III, 2000, : 1106 - 1110
  • [6] Proposed sets of critical exponents for randomly branched polymers, using a known string theory model
    March, N. H.
    Moreno, A. J.
    PHASE TRANSITIONS, 2016, 89 (06) : 543 - 546
  • [7] GAUSSIAN DIMENSIONS OF RANDOMLY BRANCHED CHAINS
    KOGAN, SI
    GANDELSMAN, MI
    BUDTOV, VP
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA B, 1985, 27 (03): : 166 - 172
  • [8] RANDOMLY BRANCHED POLYMERS - SEMIDILUTE SOLUTIONS
    DAOUD, M
    LEIBLER, L
    MACROMOLECULES, 1988, 21 (05) : 1497 - 1501
  • [9] MICROPHASE SEPARATION IN RANDOMLY BRANCHED POLYMERS
    GUTIN, AM
    GROSBERG, AY
    SHAKHNOVICH, EI
    MACROMOLECULES, 1993, 26 (14) : 3598 - 3600
  • [10] Fresh look at randomly branched polymers
    Janssen, H. -K.
    Stenull, O.
    EPL, 2010, 90 (04)