Markovian entanglement dynamics under locally scrambled quantum evolution

被引:28
作者
Kuo, Wei-Ting [1 ]
Akhtar, A. A. [1 ]
Arovas, Daniel P. [1 ]
You, Yi-Zhuang [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
THERMALIZATION; ENTROPY;
D O I
10.1103/PhysRevB.101.224202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the time evolution of quantum entanglement for a specific class of quantum dynamics, namely, the locally scrambled quantum dynamics, where each step of the unitary evolution is drawn from a random ensemble that is invariant under local (on-site) basis transformations. In this case, the average entanglement entropy follows a Markovian dynamics, such that the entanglement property of the future state can be inferred from the entanglement property of the unitary operator of the underlying quantum dynamics. We introduce the entanglement feature formulation to concisely organize the entanglement entropies over all subsystems into a many-body wave function, which allows us to describe the entanglement dynamics using an imaginary-time Schrodinger equation, such that various tools developed in quantum many-body physics can be applied. The framework enables us to investigate a variety of random quantum dynamics beyond Haar random circuits and Brownian circuits. We perform numerical simulations for these models and demonstrate the validity and prediction power of the entanglement feature approach.
引用
收藏
页数:28
相关论文
共 86 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Quantum information dynamics in multipartite integrable systems [J].
Alba, Vincenzo ;
Calabrese, Pasquale .
EPL, 2019, 126 (06)
[3]   Entanglement and thermodynamics after a quantum quench in integrable systems [J].
Alba, Vincenzo ;
Calabrese, Pasquale .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (30) :7947-7951
[4]   Entanglement negativity and conformal field theory: a Monte Carlo study [J].
Alba, Vincenzo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[5]  
[Anonymous], 2009, 2009 WRI WORLD C COM
[6]  
[Anonymous], ARXIV180300089
[7]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[8]   Theory of the phase transition in random unitary circuits with measurements [J].
Bao, Yimu ;
Choi, Soonwon ;
Altman, Ehud .
PHYSICAL REVIEW B, 2020, 101 (10)
[9]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[10]   Entanglement Spreading in a Minimal Model of Maximal Many-Body Quantum Chaos [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW X, 2019, 9 (02)