Morita equivalence classes of tame blocks of finite groups

被引:3
作者
Macgregor, Norman [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, England
基金
英国工程与自然科学研究理事会;
关键词
Block; Morita equivalence; Defect group; Tame algebra; Quasi-simple; DELIGNE-LUSZTIG VARIETIES; REDUCTIVE GROUPS; DEFECT-GROUPS; CLIFFORD THEORY; MACKEY FORMULA; 2-BLOCKS; ALGEBRAS; CHARACTERS; DECOMPOSITION; QUATERNION;
D O I
10.1016/j.jalgebra.2022.06.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that several Morita equivalence classes of tame algebras do not occur as blocks of finite groups. This refines classifications by Erdmann of classes of blocks with dihedral, semidihedral, and generalised quaternion defect groups. In particular we now have a complete classification of the Morita equivalence classes of blocks of finite groups with dihedral defect groups.(c) 2022 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:719 / 754
页数:36
相关论文
共 50 条
[31]   Morita equivalence of factorizable semigroups [J].
Laan, Valdis ;
Reimaat, Ulo .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) :723-741
[32]   Modular Curvature and Morita Equivalence [J].
Matthias Lesch ;
Henri Moscovici .
Geometric and Functional Analysis, 2016, 26 :818-873
[33]   Fair semigroups and Morita equivalence [J].
Laan, Valdis ;
Marki, Laszlo .
SEMIGROUP FORUM, 2016, 92 (03) :633-644
[34]   Morita Equivalence for Factorisable Semigroups [J].
Yu Qun CHEN Department of Mathematics .
ActaMathematicaSinica(EnglishSeries), 2001, 17 (03) :437-454
[35]   Morita equivalence for graded rings [J].
Abrams, Gene ;
Ruiz, Efren ;
Tomforde, Mark .
JOURNAL OF ALGEBRA, 2023, 617 :79-112
[36]   Morita Equivalence for Rings with Involution [J].
Ara P. .
Algebras and Representation Theory, 1999, 2 (3) :227-247
[37]   Poisson geometry and Morita equivalence [J].
Bursztyn, Henrique ;
Weinstein, Alan .
POISSON GEOMETRY, DEFORMATION QUANTISATION AND GROUP REPRESENTATIONS, 2005, 323 :1-+
[38]   Splendid Morita equivalences for principal 2-blocks with dihedral defect groups [J].
Shigeo Koshitani ;
Caroline Lassueur .
Mathematische Zeitschrift, 2020, 294 :639-666
[39]   Morita equivalence for factorisable semigroups [J].
Chen, YQ ;
Shum, KP .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03) :437-454
[40]   Comonoidal W*-Morita equivalence for von Neumann bialgebras [J].
De Commer, Kenny .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (04) :547-571