Optimal reset adaptive observer design

被引:20
作者
Paesa, D. [1 ]
Banos, A. [2 ]
Sagues, C. [1 ]
机构
[1] Univ Zaragoza, Dept Informat & Ingn Sistemas, E-50018 Zaragoza, Spain
[2] Univ Murcia, Dept Informat & Sistemas, E-30071 Murcia, Spain
关键词
Hybrid systems; Reset adaptive observer; LMI; Optimal design; PERFORMANCE; STABILITY; SYSTEMS;
D O I
10.1016/j.sysconle.2011.07.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A reset adaptive observer (ReAO) is an adaptive observer consisting of an integrator and a reset law that resets the output of the integrator depending on a predefined reset condition. The inclusion of reset elements can improve the observer performance but it can also destroy the stability of the estimation process if the ReAO is not properly tuned. As contribution, a method to optimally tune the parameters and gains of the ReAO is presented. They are optimally chosen by solving the L-2 gain minimization problem, which can be rewritten as an equivalent LMI problem. The effectiveness of the proposed method is checked by simulations comparing the results of an optimal ReAO with an optimal traditional adaptive observer. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:877 / 883
页数:7
相关论文
共 25 条
  • [1] Performance analysis of reset control systems
    Aangenent, W. H. T. M.
    Witvoet, G.
    Heemels, W. P. M. H.
    van de Molengraft, M. J. G.
    Steinbuch, M.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (11) : 1213 - 1233
  • [2] Reset Times-Dependent Stability of Reset Control Systems
    Banos, Alfonso
    Carrasco, Joaquin
    Barreiro, Antonio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (01) : 217 - 223
  • [3] Delay-Independent Stability of Reset Systems
    Banos, Alfonso
    Barreiro, Antonio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 341 - 346
  • [4] Fundamental properties of reset control systems
    Beker, O
    Hollot, CV
    Chait, Y
    Han, H
    [J]. AUTOMATICA, 2004, 40 (06) : 905 - 915
  • [5] Plant with integrator: An example of reset control overcoming limitations of linear feedback
    Beker, O
    Hollot, CV
    Chait, Y
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (11) : 1797 - 1799
  • [6] Boyd S., 1994, LINEAR MATRIX INEQUA
  • [7] An observer for a class of nonlinear systems with time varying observation delay
    Cacace, F.
    Germani, A.
    Manes, C.
    [J]. SYSTEMS & CONTROL LETTERS, 2010, 59 (05) : 305 - 312
  • [8] A passivity-based approach to reset control systems stability
    Carrasco, Joaquin
    Banos, Alfonso
    van der Schaft, Arjan
    [J]. SYSTEMS & CONTROL LETTERS, 2010, 59 (01) : 18 - 24
  • [9] Clegg J.C., 1958, Trans. Am. Inst. Electr. Eng. II, V77, P41
  • [10] State and input estimation for a class of uncertain systems
    Corless, M
    Tu, J
    [J]. AUTOMATICA, 1998, 34 (06) : 757 - 764