On the stability of a mixed type functional equation in generalized functions

被引:4
|
作者
Lee, Young-Su [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121741, South Korea
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2012年
关键词
quadratic functional equation; additive functional equation; stability; heat kernel; Gauss transform;
D O I
10.1186/1687-1847-2012-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We reformulate the following mixed type quadratic and additive functional equation with n-independent variables as the equation for the spaces of generalized functions. Using the fundamental solution of the heat equation, we solve the general solution and prove the Hyers-Ulam stability of this equation in the spaces of tempered distributions and Fourier hyperfunctions. Mathematics Subject Classification 2000: 39B82; 39B52.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] On the stability of a mixed-type linear and quadratic functional equation
    Nakmahachalasint, Paisan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (01) : 167 - 176
  • [22] The Generalized Stability of an n-Dimensional Jensen Type Functional Equation
    Tipyan, J.
    Srisawat, C.
    Udomkavanich, P.
    Nakmahachalasint, P.
    THAI JOURNAL OF MATHEMATICS, 2014, 12 (02): : 265 - 274
  • [23] STABILITY OF A MIXED TYPE ADDITIVE, QUADRATIC AND CUBIC FUNCTIONAL EQUATION IN RANDOM NORMED SPACES
    Gordji, Madjid Eshaghi
    Savadkouhi, Meysam Bavand
    FILOMAT, 2011, 25 (03) : 43 - 54
  • [24] Stability of a generalized trigonometric functional equation
    Tongsomporn, Janyarak
    Laohakosol, Vichian
    Hengkrawit, Charinthip
    Udomkavanich, Patanee
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1448 - 1457
  • [25] The stability of a generalized trigonometric functional equation
    Kim, Gwang Hui
    INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2018), 2019, 2086
  • [26] Stability of a functional equation for generalized polynomials
    Prager, Wolfgang
    Schwaiger, Jens
    AEQUATIONES MATHEMATICAE, 2016, 90 (01) : 67 - 75
  • [27] Stability of a functional equation for generalized polynomials
    Wolfgang Prager
    Jens Schwaiger
    Aequationes mathematicae, 2016, 90 : 67 - 75
  • [28] On the Stability of the Generalized Psi Functional Equation
    Kim, Gwang Hui
    Rassias, Themistocles M.
    AXIOMS, 2020, 9 (02)
  • [29] A Mixed-Type Quadratic and Cubic Functional Equation and Its Stability
    Towanlong, W.
    Nakmahachalasint, P.
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (04): : 61 - 71
  • [30] The stability of a general quadratic functional equation in distributions
    Lee, Young-Su
    Chung, Soon-Yeong
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (3-4): : 293 - 306