An Ensemble Classifier Approach on Different Feature Selection Methods for Intrusion Detection

被引:11
|
作者
Vinutha, H. P. [1 ]
Poornima, B. [1 ]
机构
[1] Bapuji Inst Engn & Technol, Davangere, Karnataka, India
来源
INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, INDIA 2017 | 2018年 / 672卷
关键词
Intrusion detection system; Feature selection; Ensemble techniques; WEKA; Classification accuracy;
D O I
10.1007/978-981-10-7512-4_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowing a day's monitoring and analyzing events of network for intrusion detection system is becoming a major task. Intrusion detection system (IDS) is an essential element to detect, identify, and track the attacks. Network attacks are divided into four classes like DoS, Probe, R2L, and U2R. In this paper, ensemble techniques like AdaBoost, Bagging, and Stacking are discussed which helps to build IDS. Ensemble technique is used by combining several machine learning algorithms. Selection of features is one of the important stages in intrusion detection model. Some feature selection methods like Cfs, Chi-square, SU, Gain Ratio, Info Gain, and OneR are used in this paper with suitable search technique to select the relevant features. The selected features are applied on AdaBoost, Bagging, and Stacking with J48 as a base classifier and along with that J48 and PART are used as single classifies. Finally, results are shown that the use of AdaBoost improves the classification accuracy. Experiments and evaluation of the approaches are performed in WEKA data mining tool by using benchmark dataset NSL-KDD '99.
引用
收藏
页码:442 / 451
页数:10
相关论文
共 50 条
  • [31] An optimized adaptive ensemble model with feature selection for network intrusion detection
    Yang, Zhongjun
    Liu, Zhi
    Zong, Xuejun
    Wang, Guogang
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (04)
  • [32] A feature selection approach to find optimal feature subsets for the network intrusion detection system
    Kang, Seung-Ho
    Kim, Kuinam J.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2016, 19 (01): : 325 - 333
  • [33] A feature selection approach to find optimal feature subsets for the network intrusion detection system
    Seung-Ho Kang
    Kuinam J. Kim
    Cluster Computing, 2016, 19 : 325 - 333
  • [34] Intrusion Detection Model Using Chi Square Feature Selection and Modified Naive Bayes Classifier
    Thaseen, I. Sumaiya
    Kumar, Ch. Aswani
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON BIG DATA AND CLOUD COMPUTING CHALLENGES (ISBCC - 16'), 2016, 49 : 81 - 91
  • [35] Feature selection-integrated classifier optimisation algorithm for network intrusion detection
    Guney, Huseyin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (23)
  • [36] Intrusion Detection Using Optimal Genetic Feature Selection and SVM based Classifier
    Senthilnayaki, B.
    Venkatalakshmi, K.
    Kannan, A.
    2015 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATION AND NETWORKING (ICSCN), 2015,
  • [37] Feature Selection Inspired Classifier Ensemble Reduction
    Diao, Ren
    Chao, Fei
    Peng, Taoxin
    Snooke, Neal
    Shen, Qiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1259 - 1268
  • [38] Network Intrusion Detection with Two-Phased Hybrid Ensemble Learning and Automatic Feature Selection
    Mananayaka, Asanka Kavinda
    Chung, Sun Sunnie
    IEEE ACCESS, 2023, 11 : 45154 - 45167
  • [39] Towards Ensemble Feature Selection for Lightweight Intrusion Detection in Resource-Constrained IoT Devices
    Fatima, Mahawish
    Rehman, Osama
    Rahman, Ibrahim M. H.
    Ajmal, Aisha
    Park, Simon Jigwan
    FUTURE INTERNET, 2024, 16 (10)
  • [40] IDS-EFS: Ensemble feature selection-based method for intrusion detection system
    Akhiat, Yassine
    Touchanti, Kaouthar
    Zinedine, Ahmed
    Chahhou, Mohamed
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 12917 - 12937