Effects of elevated CO2 and O3 on N-cycling and N2O emissions: a short-term laboratory assessment

被引:16
作者
Decock, Charlotte [1 ]
Six, Johan [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Elevated CO2; Eelevated ozone; Nitrous oxide; N-cycle; N-15; tracer; Agroecosystem; SOIL-NITROGEN TRANSFORMATIONS; ORGANIC-MATTER DYNAMICS; ATMOSPHERIC CO2; CARBON-DIOXIDE; OXIDE PRODUCTION; GLOBAL CHANGE; GRASS SWARDS; DENITRIFICATION; RESPONSES; ENRICHMENT;
D O I
10.1007/s11104-011-0961-1
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Elevated atmospheric CO2 (eCO(2)) and tropospheric O-3 (eO(3)) can alter soil microbial processes, including those underlying N2O emissions, as an indirect result of changes in plant inputs. In this study, effects of eCO(2) and eO(3) on sources of N2O in a soybean (Glycine max (L.) Merr.) agroecosystem in Illinois (SoyFACE) were investigated. We hypothesized that increases in available C and anaerobic microhabitat under eCO(2) would stimulate N2O emissions, with a proportionally larger increase in denitrification derived N2O (N2OD) compared to nitrification plus nitrifier denitrification derived N2O (N2ON+ND). We expected opposite effects under eO(3). Isotopically labeled (NH)-N-15 (4) (14) NO3 and (NH)-N-14 (4) (15) NO3 were used to evaluate mineral N transformations, N2OD, and N2ON+ND in a 12-day incubation experiment. We observed minimal effects of eCO(2) and eO(3) on N2O emissions, movement of (15) N through mineral N pools, soil moisture content and C availability. Possibly, altered C and N inputs by eCO(2) and eO(3) were small relative to the high soil organic C content and N-inputs via biological N-2-fixation, minimizing potential effects of eCO(2) and eO(3) on N-cycling. We conclude that eCO(2) and eO(3) did not affect N2O emissions in the short term. However, it remains to be tested whether N2O emissions in SoyFACE will be unaltered by eCO(2) and eO(3) on a larger temporal scale under field conditions.
引用
收藏
页码:277 / 292
页数:16
相关论文
共 71 条
[1]   Interactions between N application rate, CH4 oxidation and N2O production in soil [J].
Acton, S. D. ;
Baggs, E. M. .
BIOGEOCHEMISTRY, 2011, 103 (1-3) :15-26
[2]   What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy [J].
Ainsworth, EA ;
Long, SP .
NEW PHYTOLOGIST, 2005, 165 (02) :351-371
[3]   Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2 [J].
Ambus, P ;
Robertson, GP .
PLANT AND SOIL, 1999, 209 (01) :1-8
[4]   Source-sink balance and carbon allocation below ground in plants exposed to ozone [J].
Andersen, CP .
NEW PHYTOLOGIST, 2003, 157 (02) :213-228
[5]  
Andersen CP, 2001, TREE PHYSIOL SER, V2, P65
[6]   Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2 [J].
Arnone, JA ;
Bohlen, PJ .
OECOLOGIA, 1998, 116 (03) :331-335
[7]   A review of stable isotope techniques for N2O source partitioning in soils:: recent progress, remaining challenges and future considerations [J].
Baggs, E. M. .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2008, 22 (11) :1664-1672
[8]   CH4 oxidation and emissions of CH4 and N2O from Lolium perenne swards under elevated atmospheric CO2 [J].
Baggs, EM ;
Blum, H .
SOIL BIOLOGY & BIOCHEMISTRY, 2004, 36 (04) :713-723
[9]   Denitrification in grass swards is increased under elevated atmospheric CO2 [J].
Baggs, EM ;
Richter, M ;
Cadisch, G ;
Hartwig, UA .
SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (05) :729-732
[10]   Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE) [J].
Baggs, EM ;
Richter, M ;
Hartwig, UA ;
Cadisch, G .
GLOBAL CHANGE BIOLOGY, 2003, 9 (08) :1214-1222