Parameter and quantile estimation for the three-parameter gamma distribution based on statistics invariant to unknown location

被引:6
|
作者
Nagatsuka, Hideki [1 ]
Balakrishnan, N. [2 ]
机构
[1] Tokyo Metropolitan Univ, Fac Syst Design, Hino, Tokyo 1910065, Japan
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
Maximum likelihood estimators; Modified moment estimators; Bayesian likelihood estimators; Order statistics; Threshold parameter; Consistency; MAXIMUM-LIKELIHOOD-ESTIMATION; MODIFIED MOMENT;
D O I
10.1016/j.jspi.2012.01.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The three-parameter gamma distribution is widely used as a model for distributions of life spans, reaction times, and for other types of skewed data. In this paper, we propose an efficient method of estimation for the parameters and quantiles of the three-parameter gamma distribution, which avoids the problem of unbounded likelihood, based on statistics invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared to other prominent methods in terms of bias and mean squared error. Finally, we present two illustrative examples. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2087 / 2102
页数:16
相关论文
共 50 条
  • [31] ENTROPY-BASED PARAMETER ESTIMATION FOR EXTENDED THREE-PARAMETER BURR III DISTRIBUTION FOR LOW-FLOW FREQUENCY ANALYSIS
    Hao, Z.
    Singh, V. P.
    TRANSACTIONS OF THE ASABE, 2009, 52 (04) : 1193 - 1202
  • [32] A new useful three-parameter extension of the exponential distribution
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    Moreno-Arenas, German
    STATISTICS, 2016, 50 (02) : 312 - 337
  • [33] Fitting the three-parameter Weibull distribution with Cross Entropy
    Moeini, Asghar
    Jenab, Kouroush
    Mohammadi, Mohsen
    Foumani, Mehdi
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (09) : 6354 - 6363
  • [34] Estimation of P(Y<X) for the three-parameter generalized exponential distribution
    Raqab, Mohammad Z.
    Madi, Mohamed T.
    Kundu, Debasis
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (18) : 2854 - 2864
  • [35] Entropy-Based Parameter Estimation for the Four-Parameter Exponential Gamma Distribution
    Song, Songbai
    Song, Xiaoyan
    Kang, Yan
    ENTROPY, 2017, 19 (05)
  • [36] Sufficient conditions for the existence of a solution for the log-likelihood equations in the three-parameter gamma distribution
    Tzavelas, George
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (09) : 1371 - 1382
  • [37] Pooled estimators for the shape parameter of the three parameter gamma distribution
    Tzavelas, George
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (09) : 1099 - 1109
  • [38] A three-parameter kappa distribution with hydrologic application: a generalized gumbel distribution
    Bo Yoon Jeong
    Md. Sharwar Murshed
    Yun Am Seo
    Jeong-Soo Park
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 2063 - 2074
  • [39] A three-parameter kappa distribution with hydrologic application: a generalized gumbel distribution
    Jeong, Bo Yoon
    Murshed, Md. Sharwar
    Seo, Yun Am
    Park, Jeong-Soo
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (08) : 2063 - 2074
  • [40] A new three-parameter extension to the Birnbaum-Saunders distribution
    Owen, William J.
    IEEE TRANSACTIONS ON RELIABILITY, 2006, 55 (03) : 475 - 479