Coarse-grained cosmological perturbation theory

被引:71
作者
Pietroni, M. [1 ]
Mangano, G. [2 ]
Saviano, N. [3 ]
Viel, M. [4 ,5 ]
机构
[1] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[3] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
[4] INAF Osservatorio Astron Trieste, I-34131 Trieste, Italy
[5] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2012年 / 01期
关键词
power spectrum; cosmological parameters from LSS; baryon acoustic oscillations; OSCILLATIONS; UNIVERSE;
D O I
10.1088/1475-7516/2012/01/019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Semi-analytical methods, based on Eulerian perturbation theory, are a promising tool to follow the time evolution of cosmological perturbations at small redshifts and at mildly nonlinear scales. All these schemes are based on two approximations: the existence of a smoothing scale and the single-stream approximation, where velocity dispersion of the dark matter fluid, as well as higher moments of the particle distributions, are neglected. Despite being widely recognized, these two assumptions are, in principle, incompatible, since any finite smoothing scale gives rise to velocity dispersion and higher moments at larger scales. We describe a new approach to perturbation theory, where the Vlasov and fluid equations are derived in presence of a finite coarse-graining scale: this allows a clear separation between long and short distance modes and leads to a hybrid approach where the former are treated perturbatively and the effect of the latter is encoded in external source terms for velocity, velocity dispersion, and all the higher order moments, which can be computed from N-body simulations. We apply the coarse-grained perturbation theory to the computation of the power spectrum and the cross-spectrum between density and velocity dispersion, and compare the results with N-body simulations, finding good agreement.
引用
收藏
页数:30
相关论文
共 52 条
[1]   Cosmological and astrophysical neutrino mass measurements [J].
Abazajian, K. N. ;
Calabrese, E. ;
Cooray, A. ;
De Bernardis, F. ;
Dodelson, S. ;
Friedland, A. ;
Fuller, G. M. ;
Hannestad, S. ;
Keating, B. G. ;
Linder, E. V. ;
Lunardini, C. ;
Melchiorri, A. ;
Miquel, R. ;
Pierpaoli, E. ;
Pritchard, J. ;
Serra, P. ;
Takada, M. ;
Wong, Y. Y. Y. .
ASTROPARTICLE PHYSICS, 2011, 35 (04) :177-184
[2]   How well can (renormalized) perturbation theory predict dark matter clustering properties? [J].
Afshordi, Niayesh .
PHYSICAL REVIEW D, 2007, 75 (02)
[3]  
ALBRECHT AJ, ARXIV09010721
[4]  
[Anonymous], ARXIV09120914
[5]   Non-linear dark energy clustering [J].
Anselmi, Stefano ;
Ballesteros, Guillermo ;
Pietroni, Massimo .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (11)
[6]   Next-to-leading resummations in cosmological perturbation theory [J].
Anselmi, Stefano ;
Matarrese, Sabino ;
Pietroni, Massimo .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (06)
[7]   Signatures of primordial non-Gaussianities in the matter power-spectrum and bispectrum: the time-RG approach [J].
Bartolo, Nicola ;
Beltran Almeida, Juan P. ;
Matarrese, Sabino ;
Pietroni, Massimo ;
Riotto, Antonio .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (03)
[8]   Sounding the dark cosmos [J].
Bassett, B ;
Nichol, B ;
Eisenstein, DJ .
ASTRONOMY & GEOPHYSICS, 2005, 46 (05) :26-29
[9]  
BAUMANN D, ARXIV10042488
[10]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248