New Laplace transforms of Kummer's confluent hypergeometric functions

被引:4
作者
Kim, Yong Sup [2 ]
Rathie, Arjun K. [3 ]
Cvijovic, Djurdje [1 ]
机构
[1] Vinca Inst Nucl Sci, Atom Phys Lab, Belgrade 11001, Serbia
[2] Wonkwang Univ, Dept Math Educ, Iksan 570749, South Korea
[3] Vedant Coll Engn & Technol, Post Jakhmund 323021, Rajasthan, India
关键词
Kummer's function of the first kind; Confluent hypergeometric function; Laplace transform; Bailey's summation theorem; Gauss's second summation theorem; Kummer's summation theorem; THEOREM; SUM;
D O I
10.1016/j.mcm.2011.09.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we aim to show how one can obtain so far unknown Laplace transforms of three rather general cases of Kummer's confluent hypergeometric function F-1(1)(a; b; x) by employing generalizations of Gauss's second summation theorem, Bailey's summation theorem and Kummer's summation theorem obtained earlier by Lavoie, Grondin and Rathie. The results established may be useful in theoretical physics, engineering and mathematics. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1068 / 1071
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1966, GEN HYPERGEOMETRIC F
[2]  
[Anonymous], 1954, TABLES INTEGRAL TRAN
[3]  
Davies B., 2002, Integral Transforms and Their Applications
[4]  
Doetsch G., 1974, Introduction to the Theory and Application of the Laplace Transformation
[5]  
Lavoie J. L., 1992, Indian J. Math., V34, P23
[6]   Generalizations of Whipple's theorem on the sum of a F-3(2) [J].
Lavoie, JL ;
Grondin, F ;
Rathie, AK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) :293-300
[7]   GENERALIZATIONS OF DIXONS THEOREM ON THE SUM OF A F-3(2) [J].
LAVOIE, JL ;
GRONDIN, F ;
RATHIE, AK ;
ARORA, K .
MATHEMATICS OF COMPUTATION, 1994, 62 (205) :267-276
[8]  
OBERHETTINGER F, 1973, TABLES LAPLACE TRANS
[9]  
Prudnikov A. P., 1992, INTEGRALS SERIES DIR, V4
[10]  
Rainville E. D., 1960, Special Functions