Stroke Lesion Segmentation from Low-Quality and Few-Shot MRIs via Similarity-Weighted Self-ensembling Framework

被引:10
作者
Zhang, Dong [1 ,2 ]
Confidence, Raymond [3 ]
Anazodo, Udunna [3 ,4 ]
机构
[1] Lawson Hlth Res Inst, London, ON, Canada
[2] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[3] Western Univ, Dept Med Biophys, London, ON, Canada
[4] McGill Univ, Dept Neurol & Neurosurg, Montreal, PQ, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V | 2022年 / 13435卷
关键词
Few-shot; Stroke lesion segmentation; Low-quality; MRI; RISK-FACTORS;
D O I
10.1007/978-3-031-16443-9_9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ischemic stroke lesion is one of the prevailing diseases with the highest mortality in low- and middle-income countries. Although deep learning-based segmentation methods have the great potential to improve the medical resource imbalance and reduce stroke risk in these countries, existing segmentation studies are difficult to be deployed in these low-resource settings because they have such high requirements for the data amount (plenty-shot) and quality (high-field and high resolution) that are usually unavailable in these countries. In this paper, we propose a SimIlarity-weiGhed self-eNsembling framework (SIGN) to segment stroke lesions from low-quality and few-shot MRI data by leveraging publicly available glioma data. To overcome the low-quality challenge, a novel Identify-to-Discern Network employs attention mechanisms to identify lesions from a global perspective and progressively refine the coarse prediction via focusing on the ambiguous regions. To overcome the few-shot challenge, a new Soft Distribution-aware Updating strategy trains the Identify-to-Discern Network in the direction beneficial to tumor segmentation via respective optimizing schemes and adaptive similarity evaluation on glioma and stroke data. The experiment indicates our method outperforms existing few-shot methods and achieves the Dice of 76.84% after training with 14-case low-quality stroke lesion data, illustrating the effectiveness of our method and the potential to be deployed in low resource settings. Code is available in: https://github.com/MINDLABI/SIGN.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 21 条
[1]  
Anazodo U.C., 2022, POPULATION GLOBAL HL
[2]   Burden of Undiagnosed Hypertension in Sub-Saharan Africa A Systematic Review and Meta-Analysis [J].
Ataklte, Feven ;
Erqou, Sebhat ;
Kaptoge, Stephen ;
Taye, Betiglu ;
Echouffo-Tcheugui, Justin B. ;
Kengne, Andre P. .
HYPERTENSION, 2015, 65 (02) :291-U115
[3]   A Unified Framework for Generalized Low-Shot Medical Image Segmentation With Scarce Data [J].
Cui, Hengji ;
Wei, Dong ;
Ma, Kai ;
Gu, Shi ;
Zheng, Yefeng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (10) :2656-2671
[4]   Few-Shot Microscopy Image Cell Segmentation [J].
Dawoud, Youssef ;
Hornauer, Julia ;
Carneiro, Gustavo ;
Belagiannis, Vasileios .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2020, PT V, 2021, 12461 :139-154
[5]   ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data [J].
Diakogiannis, Foivos, I ;
Waldner, Francois ;
Caccetta, Peter ;
Wu, Chen .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 :94-114
[6]   Hypertension awareness, treatment and control in Africa: a systematic review [J].
Kayima, James ;
Wanyenze, Rhoda K. ;
Katamba, Achilles ;
Leontsini, Elli ;
Nuwaha, Fred .
BMC CARDIOVASCULAR DISORDERS, 2013, 13
[7]   Domain Generalizer: A Few-Shot Meta Learning Framework for Domain Generalization in Medical Imaging [J].
Khandelwal, Pulkit ;
Yushkevich, Paul .
DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND DISTRIBUTED AND COLLABORATIVE LEARNING, DART 2020, DCL 2020, 2020, 12444 :73-84
[8]   Association between white matter hyperintensities and stroke in a West African patient population: Evidence from the Stroke Investigative Research and Educational Network study [J].
Li, Jingfei ;
Ogbole, Godwin ;
Aribisala, Benjamin ;
Affini, Murtala ;
Yaria, Joseph ;
Kehinde, Issa ;
Rahman, Mukaila ;
Adekunle, Fakunle ;
Banjo, Rasaq ;
Faniyan, Moyinoluwalogo ;
Akinyemi, Rufus ;
Ovbiagele, Bruce ;
Owolabi, Mayowa ;
Sammet, Steffen .
NEUROIMAGE, 2020, 215
[9]   ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI [J].
Maier, Oskar ;
Menze, Bjoern H. ;
von der Gablentz, Janina ;
Hani, Levin ;
Heinrich, Mattias P. ;
Liebrand, Matthias ;
Winzeck, Stefan ;
Basit, Abdul ;
Bentley, Paul ;
Chen, Liang ;
Christiaens, Daan ;
Dutil, Francis ;
Egger, Karl ;
Feng, Chaolu ;
Glocker, Ben ;
Goetz, Michael ;
Haeck, Tom ;
Halme, Hanna-Leena ;
Havaei, Mohammad ;
Iftekharuddin, Khan M. ;
Jodoin, Pierre-Marc ;
Kamnitsas, Konstantinos ;
Kellner, Elias ;
Korvenoja, Antti ;
Larochelle, Hugo ;
Ledig, Christian ;
Lee, Jia-Hong ;
Maes, Frederik ;
Mahmood, Qaiser ;
Maier-Hein, Klaus H. ;
McKinley, Richard ;
Muschelli, John ;
Pal, Chris ;
Pei, Linmin ;
Rangarajan, Janaki Raman ;
Reza, Syed M. S. ;
Robben, David ;
Rueckert, Daniel ;
Salli, Eero ;
Suetens, Paul ;
Wang, Ching-Wei ;
Wilms, Matthias ;
Kirschke, Jan S. ;
Kraemer, Ulrike M. ;
Muente, Thomas F. ;
Schramme, Peter ;
Wiest, Roland ;
Handels, Heinz ;
Reyes, Mauricio .
MEDICAL IMAGE ANALYSIS, 2017, 35 :250-269
[10]   Camouflaged Object Segmentation with Distraction Mining [J].
Mei, Haiyang ;
Ji, Ge-Peng ;
Wei, Ziqi ;
Yang, Xin ;
Wei, Xiaopeng ;
Fan, Deng-Ping .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8768-8777