Comparison of Cosine, Modified Cosine, and Neutral Loss Based Spectrum Alignment For Discovery of Structurally Related Molecules

被引:34
作者
Bittremieux, Wout [1 ,2 ]
Schmid, Robin [1 ,2 ]
Huber, Florian [3 ]
van der Hooft, Justin J. J. [4 ,5 ]
Wang, Mingxun [1 ,2 ]
Dorrestein, Pieter C. [1 ,2 ]
机构
[1] Univ Calif San Diego, Collaborat Mass Spectrometry Innovat Ctr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[3] Univ Appl Sci, Ctr Digitalizat & Digital, D-40476 Dusseldorf, Germany
[4] Wageningen Univ, Bioinformat Grp, NL-6708 PB Wageningen, Netherlands
[5] Univ Johannesburg, Dept Biochem, Auckland Pk, ZA-2006 Johannesburg, South Africa
基金
美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
fragmented mass spectrometry; spectrum alignment; cosine similarity; molecular modification; MASS-SPECTROMETRY DATA; SEARCH;
D O I
10.1021/jasms.2c00153
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spectrum alignment of tandem mass spectrometry (MS/MS) data using the modified cosine similarity and subsequent visualization as molecular networks have been demonstrated to be a useful strategy to discover analogs of molecules from untargeted MS/MS-based metabolomics experiments. Recently, a neutral loss matching approach has been introduced as an alternative to MS/ MS-based molecular networking with an implied performance advantage in finding analogs that cannot be discovered using existing MS/MS spectrum alignment strategies. To comprehensively evaluate the scoring properties of neutral loss matching, the cosine similarity, and the modified cosine similarity, similarity measures of 955 228 peptide MS/MS spectrum pairs and 10 million small molecule MS/MS spectrum pairs were compared. This comparative analysis revealed that the modified cosine similarity outperformed neutral loss matching and the cosine similarity in all cases. The data further indicated that the performance of MS/MS spectrum alignment depends on the location and type of the modification, as well as the chemical compound class of fragmented molecules.
引用
收藏
页码:1733 / 1744
页数:12
相关论文
共 52 条
  • [21] Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades
    Hofmann, Alan F.
    Hagey, Lee R.
    [J]. JOURNAL OF LIPID RESEARCH, 2014, 55 (08) : 1553 - 1595
  • [22] Huber F., 2020, J. Open Source Softw, V5, DOI DOI 10.21105/JOSS.02411
  • [23] MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra
    Huber, Florian
    van der Burg, Sven
    van der Hooft, Justin J. J.
    Ridder, Lars
    [J]. JOURNAL OF CHEMINFORMATICS, 2021, 13 (01)
  • [24] Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships
    Huber, Florian
    Ridder, Lars
    Verhoeven, Stefan
    Spaaks, Jurriaan H.
    Diblen, Faruk
    Rogers, Simon
    van der Hooft, Justin J. J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)
  • [25] Matplotlib: A 2D graphics environment
    Hunter, John D.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 90 - 95
  • [26] Jupyter Notebooks-a publishing format for reproducible computational workflows
    Kluyver, Thomas
    Ragan-Kelley, Benjamin
    Perez, Fernando
    Granger, Brian
    Bussonnier, Matthias
    Frederic, Jonathan
    Kelley, Kyle
    Hamrick, Jessica
    Grout, Jason
    Corlay, Sylvain
    Ivanov, Paul
    Avila, Damin
    Abdalla, Safia
    Willing, Carol
    [J]. POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, 2016, : 87 - 90
  • [27] Lam S.K., 2015, P 2 WORKSH LLVM COMP, P1, DOI 10.1145/2833157.2833162
  • [28] Landrum G., 2022, RDKIT RDKIT 2022 03, DOI [10.5281/ ZENODO.6483170, DOI 10.5281/ZENODO.6483170]
  • [29] Pyteomics 4.0: Five Years of Development of a Python']Python Proteomics Framework
    Levitsky, Lev I.
    Klein, Joshua A.
    Ivanov, Mark V.
    Gorshkov, Mikhail V.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) : 709 - 714
  • [30] Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification
    Li, Yuanyue
    Kind, Tobias
    Folz, Jacob
    Vaniya, Arpana
    Mehta, Sajjan Singh
    Fiehn, Oliver
    [J]. NATURE METHODS, 2021, 18 (12) : 1524 - +