Random attractors of stochastic non-newtonian fluids

被引:6
|
作者
Guo, Chun-xiao [1 ]
Guo, Bo-ling [2 ]
Han, Yong-qian [2 ]
机构
[1] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2012年 / 28卷 / 01期
关键词
random attractors; non-Newtonian fluids; additive noise; Ornstein-Uhlenbeck process; NONLINEAR SCHRODINGER-EQUATION; SYSTEM;
D O I
10.1007/s10255-012-0132-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper investigates the asymptotic behavior of solutions for stochastic non-Newtonian fluids in a two-dimensional domain. Firstly, we prove the existence of random attractors I > (H) (omega) in H; Secondly, we prove the existence of random attractors I > (V) (omega) in V. Then we verify regularity of the random attractors by showing that I > (H) (omega) = I > (V) (omega), which implies the smoothing effect of the fluids in the sense that solution becomes eventually more regular than the initial data.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [21] Distributed control for a class of non-Newtonian fluids
    Slawig, T
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (01) : 116 - 143
  • [22] Electrokinetic flow of non-Newtonian fluids in microchannels
    Berli, Claudio L. A.
    Olivares, Maria L.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 320 (02) : 582 - 589
  • [23] A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids
    Lu, Gui
    Wang, Xiao-Dong
    Duan, Yuan-Yuan
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2016, 236 : 43 - 62
  • [24] Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids
    Etemad, SG
    Thibault, J
    Hashemabadi, SH
    ISA TRANSACTIONS, 2003, 42 (04) : 505 - 512
  • [25] LOCAL NULL CONTROLLABILITY OF A CLASS OF NON-NEWTONIAN INCOMPRESSIBLE VISCOUS FLUIDS
    De Carvalho, Pitagoras Pinheiro
    Lmaco, Juan
    Menezes, Denilson
    Thamsten, Yuri
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, : 1251 - 1283
  • [26] Strong solutions for the steady incompressible MHD equations of non-Newtonian fluids
    Shi, Weiwei
    Wang, Changjia
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (23) : 1 - 11
  • [27] On the dynamic instability of non-Newtonian fluids driven by gravity
    Jiang, Han
    Wang, Jialiang
    Zhang, Yajie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 825 - 846
  • [28] Evolution of disturbances on shallow layers of non-Newtonian fluids
    Berezin, YA
    Hutter, K
    Spodareva, LA
    PHYSICA D, 2000, 139 (3-4): : 319 - 334
  • [29] Hydraulic jumps on shallow layers of non-Newtonian fluids
    Berezin, YA
    Chugunov, VA
    Hutter, K
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2001, 101 (1-3) : 139 - 148
  • [30] Nonlinear fluid dynamics description of non-Newtonian fluids
    Harald Pleiner
    Mario Liu
    Helmut R. Brand
    Rheologica Acta, 2004, 43 : 502 - 508