Genocchi polynomial method for the multiterm variable-order fractional differential equations

被引:0
|
作者
Tural Polat, Sadiye Nergis [1 ]
Turan Dincel, Arzu [2 ]
机构
[1] Yildiz Tech Univ, Dept Elect & Commun Engn, Istanbul, Turkey
[2] Yildiz Tech Univ, Dept Math Engn, Istanbul, Turkey
关键词
Genocchi polynomials; Collocation method; Variable-order fractional differential equations; Numerical FDE solutions;
D O I
10.14744/sigma.2021.00032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a numerical solution for multiterm varable-order fractional differential equations (VO-FDEs) using Genocchi polynomials is proffered. By making use of the Genocchi polynomials, a multiterm VO-FDE can be approximated by a corresponding system of algebraic equations. To be able to do that, operational matrices for variable order fractional differentials are obtained using Genocchi polynomials. Then the algebraic equation system is solved for the coefficient values, thus the approximate solution is obtained by using the linear combination of those coefficients. Numerical examples are provided.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 50 条
  • [41] A Computational Approach to Exponential-Type Variable-Order Fractional Differential Equations
    Garrappa, Roberto
    Giusti, Andrea
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [42] UNIQUENESS OF SOLUTIONS TO INITIAL VALUE PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATIONS OF VARIABLE-ORDER
    An, Jiahui
    Chen, Pengyu
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (03): : 607 - 623
  • [43] On spectral methods for solving variable-order fractional integro-differential equations
    E. H. Doha
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Computational and Applied Mathematics, 2018, 37 : 3937 - 3950
  • [44] Numerical Solution of Variable-Order Fractional Differential Equations Using Bernoulli Polynomials
    Nemati, Somayeh
    Lima, Pedro M.
    Torres, Delfim F. M.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [45] A FAST AND PRECISE NUMERICAL ALGORITHM FOR A CLASS OF VARIABLE-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Bhrawyi, Ali H.
    Zaky, Mahmoud A.
    Abdel-Aty, Mahmoud
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (01): : 17 - 24
  • [46] On spectral methods for solving variable-order fractional integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3937 - 3950
  • [47] The Existence and Uniqueness of Solutions for Variable-Order Fractional Differential Equations with Antiperiodic Fractional Boundary Conditions
    Wang, Fang
    Liu, Lei
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [48] On the convergence of piecewise polynomial collocation methods for variable-order space-fractional diffusion equations
    Yuan, Wenping
    Liang, Hui
    Chen, Yanping
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 209 : 102 - 117
  • [49] Finite Element Method for Linear Multiterm Fractional Differential Equations
    Badr, Abdallah A.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [50] The unique identification of variable-order fractional wave equations
    Zheng, Xiangcheng
    Wang, Hong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):