On the Unitriangular Groups over Rational Numbers Field

被引:0
|
作者
Gao, Rui [1 ]
Liao, Jun [1 ]
Liu, He Guo [1 ]
Xu, Xing Zhong [1 ]
机构
[1] Hubei Univ, Sch Math & Stat, Wuhan 430062, Peoples R China
基金
中国国家自然科学基金;
关键词
Nilpotent groups; unitriangular groups; central series;
D O I
10.1007/s10114-022-0485-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U(n, DOUBLE-STRUCK CAPITAL Q) be the group of all n x n (upper) unitriangular matrices over rational numbers field DOUBLE-STRUCK CAPITAL Q. Let S be a subset of U(n, DOUBLE-STRUCK CAPITAL Q). In this paper, we prove that S is a subgroup of U(n, DOUBLE-STRUCK CAPITAL Q) if and only if the (i, j)-th entry S-ij satisfies some condition (see Theorem 3.5). Furthermore, we compute the upper central series and the lower central series for S, and obtain the condition that the upper central series and the lower central series of S coincide.
引用
收藏
页码:718 / 734
页数:17
相关论文
共 18 条
  • [1] On the Unitriangular Groups over Rational Numbers Field
    Rui Gao
    Jun Liao
    He Guo Liu
    Xing Zhong Xu
    Acta Mathematica Sinica, English Series, 2022, 38 : 718 - 734
  • [2] BOGOMOLOV MULTIPLIERS FOR UNITRIANGULAR GROUPS
    Michailov, Ivo M.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (06): : 689 - 696
  • [3] On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field
    Leshchenko, Yuriy Yu
    Sushchansky, Vitaly I.
    ALGEBRA & DISCRETE MATHEMATICS, 2014, 17 (02): : 288 - 297
  • [4] Rational representations and permutation representations of finite groups
    Bartel, Alex
    Dokchitser, Tim
    MATHEMATISCHE ANNALEN, 2016, 364 (1-2) : 539 - 558
  • [5] Equations over groups
    Roman'kov, Vitalii
    GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (02) : 191 - 239
  • [6] Length of polynomials over finite groups
    Horvath, Gabor
    Nehaniv, Chrystopher L.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (08) : 1614 - 1622
  • [7] THE RATIONAL STABLE HOMOLOGY OF MAPPING CLASS GROUPS OF UNIVERSAL NIL-MANIFOLDS
    Szymik, Markus
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (02) : 783 - 803
  • [8] GBRDs with block size three over 2-groups, semi-dihedral groups and nilpotent groups
    Abel, R. Julian R.
    Combe, Diana
    Nelson, Adrian M.
    Palmer, William D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [9] Primitive finite nilpotent linear groups over number
    Rossmann, Tobias
    JOURNAL OF ALGEBRA, 2016, 451 : 248 - 267
  • [10] On a duality for codes over non-abelian groups
    Dietrich, Heiko
    Schillewaert, Jeroen
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 789 - 805