Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries

被引:96
作者
Gao, Hongcai [1 ]
Grundish, Nicholas S. [1 ]
Zhao, Yongjie [1 ]
Zhou, Aijun [1 ]
Goodenough, John B. [1 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
来源
ENERGY MATERIAL ADVANCES | 2021年 / 2021卷
基金
美国能源部;
关键词
IONIC-CONDUCTIVITY; COMPOSITE ELECTROLYTES; METAL-ELECTRODE; ENERGY-STORAGE; FREE-VOLUME; PERFORMANCE; CHALLENGES; ANODES; CHEMISTRY; TRANSPORT;
D O I
10.34133/2021/1932952
中图分类号
O59 [应用物理学];
学科分类号
摘要
The integration of solid-polymer electrolytes into all-solid-state lithium batteries is highly desirable to overcome the limitations of current battery configurations that have a low energy density and severe safety concerns. Polyacrylonitrile is an appealing matrix for solid-polymer electrolytes; however, the practical utilization of such polymer electrolytes in all-solid-state cells is impeded by inferior ionic conductivity and instability against a lithium-metal anode. In this work, we show that a polymer-in-salt electrolyte based on polyacrylonitrile with a lithium salt as the major component exhibits a wide electrochemically stable window, a high ionic conductivity, and an increased lithium-ion transference number. The growth of dendrites from the lithium-metal anode was suppressed effectively by the polymer-in-salt electrolyte to increase the safety features of the batteries. In addition, we found that a stable interphase was formed between the lithium-metal anode and the polymer-in-salt electrolyte to restrain the uncontrolled parasitic reactions, and we demonstrated an all-solid-state battery configuration with a LiFePO4 cathode and the polymer-in-salt electrolyte, which exhibited a superior cycling stability and rate capability.
引用
收藏
页数:10
相关论文
共 84 条
[11]   Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes [J].
Brown, Zachary L. ;
Jurng, Sunhyung ;
Cao Cuong Nguyen ;
Lucht, Brett L. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3057-3062
[12]   Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte [J].
Chen, Long ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2018, 15 :37-45
[13]   Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes [J].
Cheng, Xin-Bing ;
Zhao, Chen-Zi ;
Yao, Yu-Xing ;
Liu, He ;
Zhang, Qiang .
CHEM, 2019, 5 (01) :74-96
[14]  
CROCE F, 1994, ELECTROCHIM ACTA, V39, P2187
[15]   Nanocomposite polymer electrolytes and their impact on the lithium battery technology [J].
Croce, F ;
Persi, L ;
Ronci, F ;
Scrosati, B .
SOLID STATE IONICS, 2000, 135 (1-4) :47-52
[16]   Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application [J].
Damen, L. ;
Hassoun, J. ;
Mastragostino, M. ;
Scrosati, B. .
JOURNAL OF POWER SOURCES, 2010, 195 (19) :6902-6904
[17]   Polymer electrolytes: Present, past and future [J].
Di Noto, Vito ;
Lavina, Sandra ;
Giffin, Guinevere A. ;
Negro, Enrico ;
Scrosati, Bruno .
ELECTROCHIMICA ACTA, 2011, 57 :4-13
[18]   Transport properties of binary salt polymer electrolytes [J].
Doeff, MM ;
Edman, L ;
Sloop, SE ;
Kerr, J ;
De Jonghe, LC .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :227-231
[19]   THE IMPORTANCE OF THE LITHIUM ION TRANSFERENCE NUMBER IN LITHIUM POLYMER CELLS [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1994, 39 (13) :2073-2081
[20]   In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries [J].
Duan, Hui ;
Yin, Ya-Xia ;
Zeng, Xian-Xiang ;
Li, Jin-Yi ;
Shi, Ji-Lei ;
Shi, Yang ;
Wen, Rui ;
Guo, Yu-Guo ;
Wan, Li-Jun .
ENERGY STORAGE MATERIALS, 2018, 10 :85-91