Amodal Cityscapes: A New Dataset, its Generation, and an Amodal Semantic Segmentation Challenge Baseline

被引:11
作者
Breitenstein, Jasmin [1 ]
Fingscheidt, Tim [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Commun Technol, Schleinitzstr 22, D-38106 Braunschweig, Germany
来源
2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV) | 2022年
关键词
D O I
10.1109/IV51971.2022.9827342
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Amodal perception terms the ability of humans to imagine the entire shapes of occluded objects. This gives humans an advantage to keep track of everything that is going on, especially in crowded situations. Typical perception functions, however, lack amodal perception abilities and are therefore at a disadvantage in situations with occlusions. Complex urban driving scenarios often experience many different types of occlusions and, therefore, amodal perception for automated vehicles is an important task to investigate. In this paper, we consider the task of amodal semantic segmentation and propose a generic way to generate datasets to train amodal semantic segmentation methods. We use this approach to generate an amodal Cityscapes dataset. Moreover, we propose and evaluate a method as baseline on Amodal Cityscapes, showing its applicability for amodal semantic segmentation in automotive environment perception. We provide the means to re-generate this dataset on github(1).
引用
收藏
页码:1018 / 1025
页数:8
相关论文
共 32 条
[1]  
Bar A., 2021, PACIS 2021 PROC, P1
[2]   Description of Corner Cases in Automated Driving: Goals and Challenges [J].
Bogdoll, Daniel ;
Breitenstein, Jasmin ;
Heidecker, Florian ;
Bieshaar, Maarten ;
Sick, Bernhard ;
Fingscheidt, Tim ;
Zoellner, J. Marius .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :1023-1028
[3]  
Bolte JA, 2019, IEEE INT VEH SYM, P438, DOI 10.1109/IVS.2019.8813817
[4]   EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes [J].
Braun, Markus ;
Krebs, Sebastian ;
Flohr, Fabian ;
Gavrila, Dariu M. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) :1844-1861
[5]  
Breitenstein J, 2020, IEEE INT VEH SYM, P1257, DOI [10.1109/IV47402.2020.9304789, 10.1109/iv47402.2020.9304789]
[6]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[7]  
Dollár P, 2009, PROC CVPR IEEE, P304, DOI 10.1109/CVPRW.2009.5206631
[8]   Modeling Visual Context Is Key to Augmenting Object Detection Datasets [J].
Dvornik, Nikita ;
Mairal, Julien ;
Schmid, Cordelia .
COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 :375-391
[9]   Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection [J].
Dwibedi, Debidatta ;
Misra, Ishan ;
Hebert, Martial .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1310-1319
[10]  
Erkent Ö, 2018, IEEE INT C INT ROBOT, P888, DOI 10.1109/IROS.2018.8593434