Finite depth and Jacobson-Bourbaki correspondence

被引:13
作者
Kadison, Lars [1 ]
机构
[1] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/j.jpaa.2007.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a notion of depth three tower C C B C A with depth two ring extension A vertical bar B being the case B = C. If A = End B-C and B vertical bar C is a Frobenius extension with A vertical bar B vertical bar C depth three, then A vertical bar C is depth two. If A, B and C correspond to a tower G > H > K via group algebras over a base ring F, the depth three condition is the condition that K has normal closure K-G containedin H. For a depth three tower of rings, a pre-Galois theory for the ring End (B)A(C) andcoring (A circle times(B) A)(C) involving Morita context bimodules and left coideal subrings is applied to specialize a Jacobson-Bourbaki correspondence theorem for augmented rings to depth two extensions with depth three intermediate division rings. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1822 / 1839
页数:18
相关论文
共 26 条
[1]  
[Anonymous], 1999, U LECT SERIES
[2]   Weak Hopf algebras I.: Integral theory and C*-structure [J].
Böhm, G ;
Nill, F ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 1999, 221 (02) :385-438
[3]   Hopf algebroids with bijective antipodes:: axioms, integrals, and duals [J].
Böhm, G ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 2004, 274 (02) :708-750
[4]  
BORCEAUX F, 2001, CSAM, V72
[5]  
BRZEZINSKI T, 2003, LMS, V309
[6]  
Etingof P, 2001, DUKE MATH J, V108, P135
[7]   HOPF GALOIS THEORY FOR SEPARABLE FIELD-EXTENSIONS [J].
GREITHER, C ;
PAREIGIS, B .
JOURNAL OF ALGEBRA, 1987, 106 (01) :239-258
[8]  
Hungerford T.W., 1974, ALGEBRA HOLT
[9]  
Jacobson N., 1980, Basic algebra, VII
[10]   Bialgebroid actions on depth two extensions and duality [J].
Kadison, L ;
Szlachányi, K .
ADVANCES IN MATHEMATICS, 2003, 179 (01) :75-121