Orthogonal polynomials and generalized Gauss-Rys quadrature formulae

被引:5
|
作者
Milovanovic, Gradimir V. [1 ,2 ]
Vasovic, Nevena [3 ]
机构
[1] Serbian Acad Arts & Sci, Beograd 11000, Serbia
[2] Univ Nis, Fac Sci & Math, Nish, Serbia
[3] Univ Kragujevac, Fac Hotel Management & Tourism, Vrnjacka Banja 36210, Serbia
关键词
Nodes; orthogonal polynomials; quadrature rule; recurrence relation; weights; INTEGRALS; CONSTRUCTION; COMPUTATION;
D O I
10.48129/kjs.v49i1.10665
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Orthogonal polynomials and the corresponding quadrature formulas of Gaussian type concerning omega(lambda) (t; x) = exp (-xt(2)) (1 - t(2))(lambda-1/2) on (-1, 1), with parameters lambda > -1/2 and x >0, are considered. For lambda = 1/2 these quadrature rules reduce to the so-called Gauss-Rys quadrature formulas, which were investigated earlier by several authors, e.g., Dupuis at al 1976 and 1983; Sagar 1992; Schwenke 2014; Shizgal 2015; King 2016; Milovanovic 2018, etc. In this generalized case, the method of modified moments is used, as well as a transformation of quadratures on (-1, 1) with N nodes to ones on (0, 1) with only (N + 1)/2 nodes. Such an approach provides a stable and very efficient numerical construction.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Generalized Gauss-Rys orthogonal polynomials
    Garcia-Ardila, J. C.
    Marcellan, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
  • [2] Quadrature formulae connected to σ-orthogonal polynomials
    Milovanovic, GV
    Spalevic, MM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) : 619 - 637
  • [3] Generalized Stieltjes Polynomials and Rational Gauss–Kronrod Quadrature
    M. Bello Hernández
    B. de la Calle Ysern
    G. López Lagomasino
    Constructive Approximation, 2004, 20 : 249 - 265
  • [4] Gauss quadrature formula: An extension via interpolating orthogonal polynomials
    Bokhari, M. A.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (05): : 637 - 645
  • [5] Generalized Stieltjes polynomials and rational Gauss-Kronrod quadrature
    Hernández, MB
    Ysern, BD
    Lagomasino, GL
    CONSTRUCTIVE APPROXIMATION, 2004, 20 (02) : 249 - 265
  • [6] Gauss Legendre Quadrature Formulae for Tetrahedra
    Rathod, H. T.
    Venkatesudu, B.
    Nagaraja, K. V.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2005, 6 (03): : 179 - 186
  • [7] Cubature formulae and orthogonal polynomials
    Cools, R
    Mysovskikh, IP
    Schmid, HJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) : 121 - 152
  • [8] Trigonometric orthogonal systems and quadrature formulae
    Milovanovic, Gradimir V.
    Cvetkovi, Aleksandar S.
    Stanic, Marija P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (11) : 2915 - 2931
  • [9] Generalized Gauss–Radau and Gauss–Lobatto Formulae
    Walter Gautschi
    BIT Numerical Mathematics, 2004, 44 : 711 - 720
  • [10] Convergence Acceleration of Gauss–Chebyshev Quadrature Formulae
    M. Kzaz
    M. Prévost
    Numerical Algorithms, 2003, 34 : 379 - 391