TOPOLOGICAL METHOD FOR COUPLED SYSTEMS OF IMPULSIVE STOCHASTIC SEMILINEAR DIFFERENTIAL INCLUSIONS WITH FRACTIONAL BROWNIAN MOTION

被引:7
|
作者
Blouhi, T. [1 ]
Caraballo, T. [2 ,3 ]
Ouahab, A. [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Campus Reina Mercedes, E-41012 Seville, Spain
[3] Univ Adrar, Dept Math & Comp Sci, Natl Rd 06, Adrar 01000, Algeria
来源
FIXED POINT THEORY | 2019年 / 20卷 / 01期
关键词
Mild solutions; fractional Brownian motion; impulses; matrix convergent to zero; generalized Banach space; fixed point; set-valued analysis; differential inclusions; FIXED-POINT THEOREM; EVOLUTION INCLUSIONS; EXISTENCE; EQUATIONS;
D O I
10.24193/fpt-ro.2019.1.05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of mild solutions for a first-order impulsive semilinear stochastic differential inclusion with an infinite-dimensional fractional Brownian motion. We consider the cases in which the right hand side can be either convex or nonconvex-valued. The results are obtained by using two different fixed point theorems for multivalued mappings, more precisely, the technique is based on a multivalued version of Perov's fixed point theorem and a new version of a nonlinear alternative of Leray-Schauder's fixed point theorem in generalized Banach spaces.
引用
收藏
页码:71 / 105
页数:35
相关论文
共 50 条