Driver Fatigue Detection Using Improved Deep Learning and Personalized Framework

被引:2
|
作者
Wang, Jinfeng [1 ]
Huang, Shuaihui [2 ]
Liu, Junyang [3 ]
Huang, Dong [2 ]
Wang, Wenzhong [4 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou Key Lab Intelligent Agr, Guangzhou 510642, Guangdong, Peoples R China
[2] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
[3] Ind & Commercial Bank China, Zhuhai 519000, Guangdong, Peoples R China
[4] South China Agr Univ, Coll Econ & Management, Guangzhou 510642, Guangdong, Peoples R China
关键词
Fatigue detection; face recognition; deep learning; convolutional network clustering; personalized framework;
D O I
10.1142/S0218213022500245
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In transportation, drivers' state directly affects traffic safety. Therefore, an accurate driver's fatigue detection is crucial for ensuring driving safety. Real-time and accurate technology is needed for driver fatigue detection. To address this problem, this article proposes a fatigue detection method based on an improved deep learning and personalized framework. First, clustering is applied to face size, and cluster numbers are used to determine the number of detection layers. Then, the size of anchor boxes is set according to the face size. In the proposed framework, the number of convolutional networks is set according to the principle that the receptive field should match the face size in the predicted feature map. Finally, a variety of fatigue features are learned by minimizing the loss function. In addition, a personalized face fatigue detection method is put forward for building a fatigue detection framework to judge the driver's fatigue status more reasonably. The experimental results show that the proposed method based on an improved clustering method and local receptive field can improve the detection speed of driver's fatigue while maintaining high detection accuracy. The proposed method can reach 125 fps by using GPU GeForce GTX TITAN, which satisfies the real-time requirement. In addition, the personalized framework can achieve high detection accuracy while keeping acceptable speed. The proposed model can accurately and timely detect driver fatigue, which can help to avoid accidents.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Intelligent Driver Safety System Using Fatigue Detection
    Naz, Samra
    Ahmed, Aneeqa
    Mubarak, Qurat ul Ain
    Noshin, Irum
    2017 19TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATIONS TECHNOLOGY (ICACT) - OPENING NEW ERA OF SMART SOCIETY, 2017, : 89 - 93
  • [42] Driver Fatigue Detection Using Mouth and Yawning Analysis
    Saradadevi, Mandalapu
    Bajaj, Preeti
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (06): : 183 - 188
  • [43] Sports fatigue detection based on deep learning
    Guan, Xiaole
    Lin, Yanfei
    Wang, Qun
    Liu, Zhiwen
    Liu, Chengyi
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [44] Drowsy Driver Detection Using Deep Learning and Multi-Sensor Data Fusion
    Kulhandjian, Hovannes
    Martinez, Nicolas
    Kulhandjian, Michel
    2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [45] A Novel Hybrid Approach for Driver Drowsiness Detection Using a Custom Deep Learning Model
    Ramzan, Muhammad
    Abid, Adnan
    Fayyaz, Muhammad
    Alahmadi, Tahani Jaser
    Nobanee, Haitham
    Rehman, Amjad
    IEEE ACCESS, 2024, 12 : 126866 - 126884
  • [46] Driver Drowsiness Detection System using Deep Learning based on Visual Facial Features
    Mahmoud, Mahamad Salah
    Jarndal, Anwar
    Alzghoul, Ahmad
    Almahasneh, Hossam
    Alsyouf, Imad
    Hamid, Abdul Kadir
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 453 - 458
  • [47] MalDozer: Automatic framework for android malware detection using deep learning
    Karbab, ElMouatez Billah
    Debbabi, Mourad
    Derhab, Abdelouahid
    Mouheb, Djedjiga
    DIGITAL INVESTIGATION, 2018, 24 : S48 - S59
  • [48] A Novel Framework for Windows Malware Detection Using a Deep Learning Approach
    Darem, Abdulbasit A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 461 - 479
  • [49] Voice Pathology Detection Using Deep Learning on Mobile Healthcare Framework
    Alhussein, Musaed
    Muhammad, Ghulam
    IEEE ACCESS, 2018, 6 : 41034 - 41041
  • [50] A Hybrid Framework for Intrusion Detection in Healthcare Systems Using Deep Learning
    Akshay Kumaar, M.
    Samiayya, Duraimurugan
    Vincent, P. M. Durai Raj
    Srinivasan, Kathiravan
    Chang, Chuan-Yu
    Ganesh, Harish
    FRONTIERS IN PUBLIC HEALTH, 2022, 9