Mechanical and tribological properties of graphene nanoplatelets-reinforced titanium composites fabricated by powder metallurgy

被引:14
作者
Cao, Zhen [1 ,2 ,3 ]
Li, Jiong-li [1 ,2 ,3 ]
Zhang, Hai-ping [1 ,2 ,3 ]
Li, Wen-bo [1 ,2 ,3 ]
Wang, Xu-dong [1 ,2 ,3 ]
机构
[1] AECC Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China
[2] Beijing Inst Graphene Technol, Beijing 100094, Peoples R China
[3] Beijing Engn Res Ctr Graphene Applicat, Beijing 100095, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium matrix composite; Graphene; Mechanical testing; Tribological property; Powder metallurgy; MATRIX COMPOSITES; ALLOY; TEMPERATURE; MICROSTRUCTURE; STRENGTH; FRICTION;
D O I
10.1007/s42243-020-00417-w
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Titanium matrix composite reinforced by graphene nanoplatelets (GNPs) was fabricated via powder metallurgy route. Hot isostatic pressing and hot extrusion were used to consolidate the mixed powder of GNPs and TC4 titanium (Ti) alloy. The microstructures, mechanical properties and sliding wear performance of Ti/GNPs composite had been researched to evaluate the reinforcing effect of GNPs on titanium matrix. Microstructure observation indicates that GNPs could restrain grain growth slightly in titanium matrix. Titanium matrix and graphene exhibit a clean and firm interface formed by means of metallurgical bonding on atomic scale. Compared with the monolithic titanium alloy, the composite with 1.2 vol.% GNPs exhibits significantly improved elastic modulus and strength. The sliding wear test shows that there is an obvious enhancement in the tribological performance of Ti/GNPs composite with 1.2 vol.% GNPs. The results of this work indicate that GNP is an efficient reinforcement material in titanium matrix. The strengthening mechanism including precipitates strengthening, load transfer and grain refinement mechanism of GNPs in titanium matrix was discussed. A modified shear-lag model was used to analyze the reinforcement contribution of the stress transfer mechanism. The calculation shows that the stress load mechanism constitutes the main strengthening mechanism in Ti/GNPs composite.
引用
收藏
页码:1357 / 1362
页数:6
相关论文
共 32 条
[1]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Perspectives on Titanium Science and Technology [J].
Banerjee, Dipankar ;
Williams, J. C. .
ACTA MATERIALIA, 2013, 61 (03) :844-879
[4]   Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites [J].
Boostani, A. Fadavi ;
Yazdani, S. ;
Mousavian, R. Taherzadeh ;
Tahamtan, S. ;
Khosroshahi, R. Azari ;
Wei, D. ;
Brabazon, D. ;
Xu, J. Z. ;
Zhang, X. M. ;
Jiang, Z. Y. .
MATERIALS & DESIGN, 2015, 88 :983-989
[5]   Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Tan, Zhanqiu ;
Ji, Gang ;
Amin-Ahmadi, Behnam ;
Guo, Qiang ;
Fan, Genlian ;
Guo, Cuiping ;
Li, Zhiqiang ;
Zhang, Di .
CARBON, 2017, 117 :65-74
[6]   Reinforcement with graphene nanoflakes in titanium matrix composites [J].
Cao, Zhen ;
Wang, Xudong ;
Li, Jiongli ;
Wu, Yue ;
Zhang, Haiping ;
Guo, Jianqiang ;
Wang, Shengqiang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 696 :498-502
[7]   Reinforcing mechanism of graphene at atomic level: Friction, crack surface adhesion and 2D geometry [J].
Chen, Shu Jian ;
Li, Chen Yang ;
Wang, Quan ;
Duan, Wen Hui .
CARBON, 2017, 114 :557-565
[8]   Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites [J].
Du, Xian ;
Du, Wenbo ;
Wang, Zhaohui ;
Liu, Ke ;
Li, Shubo .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 711 :633-642
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Friction stir welding of titanium alloys: A review [J].
Gangwar, Kapil ;
Ramulu, M. .
MATERIALS & DESIGN, 2018, 141 :230-255