Chen's first inequality for Riemannian maps

被引:20
作者
Sahin, Bayram [1 ]
机构
[1] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
Chen inequality; Riemannian map; harmonic map; Hopf fibration; QUASI-CONSTANT CURVATURE; SPACE-FORMS; SUBMANIFOLDS; CONNECTION; CLASSIFICATION; SUBMERSIONS; MANIFOLDS;
D O I
10.4064/ap3958-7-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a basic Chen inequality for Riemannian maps between Riemannian manifolds.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 30 条
[1]  
Abraham R, 1988, Manifolds, tensor analysis, and applications, V75
[2]   Riemannian submersions, δ-invariants, and optimal inequality [J].
Alegre, Pablo ;
Chen, Bang-Yen ;
Munteanu, Marian Ioan .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (03) :317-331
[3]  
[Anonymous], 2003, Harmonic Morphisms between Riemannian Manifolds
[4]  
[Anonymous], 2011, Pseudo-Riemannian geometry, [delta]-invariants and applications
[5]   Examples and classification of Riemannian submersions satisfying a basic equality [J].
Chen, BY .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 72 (03) :391-402
[6]   Riemannian submersions, minimal immersions and cohomology class [J].
Chen, BY .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (10) :162-167
[7]   SOME PINCHING AND CLASSIFICATION-THEOREMS FOR MINIMAL SUBMANIFOLDS [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1993, 60 (06) :568-578
[8]   A general inequality for submanifolds in complex-space-forms and its applications [J].
Chen, BY .
ARCHIV DER MATHEMATIK, 1996, 67 (06) :519-528
[9]  
Chen BY, 2000, HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL I, P187, DOI 10.1016/S1874-5741(00)80006-0
[10]  
Faghfouri M., 2015, Glob. J. Adv. Res. Class. Mod. Geom, V4, P86