Improving Children Diagnostics by Efficient Multi-label Classification Method

被引:12
作者
Glinka, Kinga [1 ]
Wosiak, Agnieszka [1 ]
Zakrzewska, Danuta [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Wolczanska 215, Lodz, Poland
来源
INFORMATION TECHNOLOGIES IN MEDICINE, ITIB 2016, VOL 1 | 2016年 / 471卷
关键词
Children diagnostics; Problem transformation methods; Labels chain; Multi-label classification; HYPERTENSION;
D O I
10.1007/978-3-319-39796-2_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using intelligent computational methods may support children diagnostics process. As in many cases patients are affected by multiple illnesses, multi-perspective view on patient data is necessary to improve medical decision making. In the paper, multi-label classification method-Labels Chain is considered. It performs well when the number of attributes significantly exceeds the number of instances. The effectiveness of the method is checked by experiments conducted on real data. The obtained results are evaluated by using two metrics: Classification Accuracy and Hamming Loss, and compared to the effects of the most popular techniques: Binary Relevance and Label Power-set.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 50 条
  • [41] Detection and Multi-label Classification of Bats
    Dierckx, Lucile
    Beauvois, Melanie
    Nijssen, Siegfried
    ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 53 - 65
  • [42] Multi-label Scientific Document Classification
    Ali, Tariq
    Asghar, Sohail
    JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (06): : 1707 - 1716
  • [43] Compact learning for multi-label classification
    Lv, Jiaqi
    Wu, Tianran
    Peng, Chenglun
    Liu, Yunpeng
    Xu, Ning
    Geng, Xin
    PATTERN RECOGNITION, 2021, 113
  • [44] Classifier chains for multi-label classification
    Jesse Read
    Bernhard Pfahringer
    Geoff Holmes
    Eibe Frank
    Machine Learning, 2011, 85
  • [45] Interdependence Model for Multi-label Classification
    Yoshimura, Kosuke
    Iwase, Tomoaki
    Baba, Yukino
    Kashima, Hisashi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 55 - 68
  • [46] Multi-dimensional multi-label classification: Towards encompassing heterogeneous label spaces and multi-label annotations
    Jia, Bin -Bin
    Zhang, Min -Ling
    PATTERN RECOGNITION, 2023, 138
  • [47] Ensemble methods for multi-label classification
    Rokach, Lior
    Schclar, Alon
    Itach, Ehud
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) : 7507 - 7523
  • [48] ReliefF for Hierarchical Multi-label Classification
    Slavkov, Ivica
    Karcheska, Jana
    Kocev, Dragi
    Kalajdziski, Slobodan
    Dzeroski, Saso
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 : 148 - 161
  • [49] Multi-Label Classification of Pure Code
    Gao, Bin
    Qin, Hongwu
    Ma, Xiuqin
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2024, 34 (10) : 1641 - 1659
  • [50] Multi-Label Classification Based on Associations
    Alazaidah, Raed
    Samara, Ghassan
    Almatarneh, Sattam
    Hassan, Mohammad
    Aljaidi, Mohammad
    Mansur, Hasan
    APPLIED SCIENCES-BASEL, 2023, 13 (08):