Improving Children Diagnostics by Efficient Multi-label Classification Method

被引:12
|
作者
Glinka, Kinga [1 ]
Wosiak, Agnieszka [1 ]
Zakrzewska, Danuta [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Wolczanska 215, Lodz, Poland
来源
INFORMATION TECHNOLOGIES IN MEDICINE, ITIB 2016, VOL 1 | 2016年 / 471卷
关键词
Children diagnostics; Problem transformation methods; Labels chain; Multi-label classification; HYPERTENSION;
D O I
10.1007/978-3-319-39796-2_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using intelligent computational methods may support children diagnostics process. As in many cases patients are affected by multiple illnesses, multi-perspective view on patient data is necessary to improve medical decision making. In the paper, multi-label classification method-Labels Chain is considered. It performs well when the number of attributes significantly exceeds the number of instances. The effectiveness of the method is checked by experiments conducted on real data. The obtained results are evaluated by using two metrics: Classification Accuracy and Hamming Loss, and compared to the effects of the most popular techniques: Binary Relevance and Label Power-set.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 50 条
  • [21] Scalable and efficient multi-label classification for evolving data streams
    Read, Jesse
    Bifet, Albert
    Holmes, Geoff
    Pfahringer, Bernhard
    MACHINE LEARNING, 2012, 88 (1-2) : 243 - 272
  • [22] An Efficient Multi-Label Classification System Using Ensemble of Classifiers
    Chandran, Shilpa A.
    Panicker, Janu R.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 1133 - 1136
  • [23] Scalable and efficient multi-label classification for evolving data streams
    Jesse Read
    Albert Bifet
    Geoff Holmes
    Bernhard Pfahringer
    Machine Learning, 2012, 88 : 243 - 272
  • [24] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [25] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [26] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [27] Scalable Multi-Label Arabic Text Classification
    Ahmed, Nizar A.
    Shehab, Mohammed A.
    Al-Ayyoub, Mahmoud
    Hmeidi, Ismail
    2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2015, : 212 - 217
  • [28] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [29] Robust label compression for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wu, Jin-Qiao
    Li, Xiao
    KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 32 - 42
  • [30] Calibrated Multi-label Classification with Label Correlations
    He, Zhi-Fen
    Yang, Ming
    Liu, Hui-Dong
    Wang, Lei
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1361 - 1380