Model predictive control for max-plus-linear discrete event systems

被引:181
|
作者
De Schutter, B [1 ]
van den Boom, T [1 ]
机构
[1] Delft Univ Technol, Fac Informat Technol & Syst, Control Lab, NL-2600 GA Delft, Netherlands
关键词
discrete-event systems; predictive control; model-based control; generalized predictive control; max-plus-linear systems; max-plus algebra;
D O I
10.1016/S0005-1098(01)00054-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model predictive control (MPC) is a very popular controller design method in the process industry. A key advantage of MPC is that it can accommodate constraints on the inputs and outputs. Usually MPC uses linear discrete-rime models. In this paper we extend MPC to a class of discrete-event systems that can be described by models that are ''linear" in the max-plus algebra, which has maximization and addition as basic operations. In general. the resulting optimization problem are nonlinear and nonconvex. However, if the control objective and the constraints depend monotonically on the outputs of the system, the model predictive control problem can be recast as problem with a convex feasible set. If in addition the objective function is convex, this leads to a convex optimization problem. which can be solved very efficiently. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1049 / 1056
页数:8
相关论文
共 50 条
  • [21] Analysis and control of max-plus linear discrete-event systems: An introduction
    Bart De Schutter
    Ton van den Boom
    Jia Xu
    Samira S. Farahani
    Discrete Event Dynamic Systems, 2020, 30 : 25 - 54
  • [22] Input signal design for identitication of max-plus-linear systems
    Schullerus, Gernot
    Krebs, Volker
    De Schutter, Bart
    van den Boom, Ton
    AUTOMATICA, 2006, 42 (06) : 937 - 943
  • [23] Optimistic optimization for model predictive control of max-plus linear systems
    Xu, Jia
    van den Boom, Ton
    De Schutter, Bart
    AUTOMATICA, 2016, 74 : 16 - 22
  • [24] Modeling and control of switching max-plus-linear systems with random and deterministic switching
    Ton J. J. van den Boom
    Bart De Schutter
    Discrete Event Dynamic Systems, 2012, 22 : 293 - 332
  • [25] Formal Verification of Stochastic Max-Plus-Linear Systems
    Soudjani, Sadegh Esmaeil Zadeh
    Adzkiya, Dieky
    Abate, Alessandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) : 2861 - 2876
  • [26] Model predictive control for discrete event systems with partial synchronization
    David-Henriet, Xavier
    Hardouin, Laurent
    Raisch, Joerg
    Cottenceau, Bertrand
    AUTOMATICA, 2016, 70 : 9 - 13
  • [27] Model Predictive Control for Stochastic Max-Plus Linear Systems With Chance Constraints
    Xu, Jia
    van den Boom, Ton
    De Schutter, Bart
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (01) : 337 - 342
  • [28] Computational techniques for reachability analysis of Max-Plus-Linear systems
    Adzkiya, Dieky
    De Schutter, Bart
    Abate, Alessandro
    AUTOMATICA, 2015, 53 : 293 - 302
  • [29] MPC for max-plus-linear systems: Closed-loop behavior and tuning
    van den Boom, T
    De Schutter, B
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 325 - 330
  • [30] DUALITY BETWEEN INVARIANT SPACES FOR MAX-PLUS LINEAR DISCRETE EVENT SYSTEMS
    Di Loreto, Michael
    Gaubert, Stephane
    Katz, Ricardo D.
    Loiseau, Jean-Jacques
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) : 5606 - 5628