Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma

被引:65
作者
Cheng, Jun [1 ]
Han, Zhi [2 ,3 ]
Mehra, Rohit [4 ]
Shao, Wei [2 ]
Cheng, Michael [2 ]
Feng, Qianjin [5 ]
Ni, Dong [1 ]
Huang, Kun [2 ,3 ]
Cheng, Liang [6 ]
Zhang, Jie [7 ]
机构
[1] Shenzhen Univ, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Sch Biomed Engn,Hlth Sci Ctr, Shenzhen, Peoples R China
[2] Indiana Univ Sch Med, Dept Med, Indianapolis, IN 46202 USA
[3] Regenstrief Inst Hlth Care, Indianapolis, IN 46202 USA
[4] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[5] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[6] Indiana Univ Sch Med, Dept Pathol & Lab Med, Indianapolis, IN 46202 USA
[7] Indiana Univ, Dept Med & Mol Genet, Indianapolis, IN 46204 USA
基金
中国国家自然科学基金;
关键词
TARGETED THERAPIES; LANDSCAPE; FEATURES; FISH;
D O I
10.1038/s41467-020-15671-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
TFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) generally progresses more aggressively compared with other RCC subtypes, but it is challenging to diagnose TFE3-RCC by traditional visual inspection of pathological images. In this study, we collect hematoxylin and eosin- stained histopathology whole-slide images of 74 TFE3-RCC cases (the largest cohort to date) and 74 clear cell RCC cases (ccRCC, the most common RCC subtype) with matched gender and tumor grade. An automatic computational pipeline is implemented to extract image features. Comparative study identifies 52 image features with significant differences between TFE3-RCC and ccRCC. Machine learning models are built to distinguish TFE3-RCC from ccRCC. Tests of the classification models on an external validation set reveal high accuracy with areas under ROC curve ranging from 0.842 to 0.894. Our results suggest that automatically derived image features can capture subtle morphological differences between TFE3-RCC and ccRCC and contribute to a potential guideline for TFE3-RCC diagnosis. Translocation renal cell carcinoma is an aggressive form of renal cancer that is often misdiagnosed to other subtypes. Here the authors demonstrated that by using machine learning and H&E stained whole-slide images, an accurate diagnose of this particular type of renal cancer can be achieved.
引用
收藏
页数:9
相关论文
共 45 条
[21]   Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma [J].
Damayanti, Nur P. ;
Budka, Justin A. ;
Khella, Heba W. Z. ;
Ferris, Mary W. ;
Ku, Sheng Yu ;
Kauffman, Eric ;
Wood, Anthony C. ;
Ahmed, Khunsha ;
Chintala, Venkata Nithinsai ;
Adelaiye-Ogala, Remi ;
Elbanna, May ;
Orillion, Ashley ;
Chintala, Sreenivasulu ;
Kao, Chinghai ;
Linehan, W. Marston ;
Yousef, George M. ;
Hollenhorst, Peter C. ;
Pili, Roberto .
CLINICAL CANCER RESEARCH, 2018, 24 (23) :5977-5989
[22]   Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer [J].
Kather, Jakob Nikolas ;
Pearson, Alexander T. ;
Halama, Niels ;
Jaeger, Dirk ;
Krause, Jeremias ;
Loosen, Sven H. ;
Marx, Alexander ;
Boor, Peter ;
Tacke, Frank ;
Neumann, Ulf Peter ;
Grabsch, Heike I. ;
Yoshikawa, Takaki ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Trautwein, Christian ;
Luedde, Tom .
NATURE MEDICINE, 2019, 25 (07) :1054-+
[23]   Adult Xp11 Translocation Renal Cell Carcinoma Diagnosed by Cytogenetics and Immunohistochemistry [J].
Komai, Yoshinobu ;
Fujiwara, Mutsunori ;
Fujii, Yasuhisa ;
Mukai, Hiroyuki ;
Yonese, Junji ;
Kawakami, Satoru ;
Yamamoto, Shinya ;
Migita, Toshiro ;
Ishikawa, Yuichi ;
Kurata, Morito ;
Nakamura, Takuro ;
Fukuil, Iwao .
CLINICAL CANCER RESEARCH, 2009, 15 (04) :1170-1176
[24]   Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma [J].
Linehan, W. Marston ;
Spellman, Paul T. ;
Ricketts, Christopher J. ;
Creighton, Chad J. ;
Fei, Suzanne S. ;
Davis, Caleb ;
Wheeler, David A. ;
Murray, Bradley A. ;
Schmidt, Laura ;
Vocke, Cathy D. ;
Peto, Myron ;
Al Mamun, Abu Amar M. ;
Shinbrot, Eve ;
Sethi, Anurag ;
Brooks, Samira ;
Rathmell, W. Kimryn ;
Brooks, Angela N. ;
Hoadley, Katherine A. ;
Robertson, A. Gordon ;
Brooks, Denise ;
Bowlby, Reanne ;
Sadeghi, Sara ;
Shen, Hui ;
Weisenberger, Daniel J. ;
Bootwalla, Moiz ;
Baylin, Stephen B. ;
Laird, Peter W. ;
Cherniack, Andrew D. ;
Saksena, Gordon ;
Haake, Scott ;
Li, Jun ;
Liang, Han ;
Lu, Yiling ;
Mills, Gordon B. ;
Akbani, Rehan ;
Leiserson, Mark D. M. ;
Raphael, Benjamin J. ;
Anur, Pavana ;
Bottaro, Donald ;
Albiges, Laurence ;
Barnabas, Nandita ;
Choueiri, Toni K. ;
Czerniak, Bogdan ;
Godwin, Andrew K. ;
Hakimi, A. Ari ;
Ho, Thai H. ;
Hsieh, James ;
Ittmann, Michael ;
Kim, William Y. ;
Krishnan, Bhavani .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 374 (02) :135-145
[25]   Five decades of urologic pathology: the accelerating expansion of knowledge in renal cell neoplasia [J].
MacLennan, Gregory T. ;
Cheng, Liang .
HUMAN PATHOLOGY, 2020, 95 :24-45
[26]   A Contemporary Update With Emphasis on Morphologic, Immunophenotypic, and Molecular Mimics [J].
Magers, Martin J. ;
Udager, Aaron M. ;
Mehra, Rohit .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2015, 139 (10) :1224-1233
[27]   The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours [J].
Moch, Holger ;
Cubilla, Antonio L. ;
Humphrey, Peter A. ;
Reuter, Victor E. ;
Ulbright, Thomas M. .
EUROPEAN UROLOGY, 2016, 70 (01) :93-105
[28]   Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis [J].
Natrajan, Rachael ;
Sailem, Heba ;
Mardakheh, Faraz K. ;
Garcia, Mar Arias ;
Tape, Christopher J. ;
Dowsett, Mitch ;
Bakal, Chris ;
Yuan, Yinyin .
PLOS MEDICINE, 2016, 13 (02)
[29]   Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy [J].
Peng, HC ;
Long, FH ;
Ding, C .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (08) :1226-1238
[30]   Nucleus Segmentation in Histology Images with Hierarchical Multilevel Thresholding [J].
Phoulady, Hady Ahmady ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Mouton, Peter R. .
MEDICAL IMAGING 2016: DIGITAL PATHOLOGY, 2016, 9791