Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma

被引:65
作者
Cheng, Jun [1 ]
Han, Zhi [2 ,3 ]
Mehra, Rohit [4 ]
Shao, Wei [2 ]
Cheng, Michael [2 ]
Feng, Qianjin [5 ]
Ni, Dong [1 ]
Huang, Kun [2 ,3 ]
Cheng, Liang [6 ]
Zhang, Jie [7 ]
机构
[1] Shenzhen Univ, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Sch Biomed Engn,Hlth Sci Ctr, Shenzhen, Peoples R China
[2] Indiana Univ Sch Med, Dept Med, Indianapolis, IN 46202 USA
[3] Regenstrief Inst Hlth Care, Indianapolis, IN 46202 USA
[4] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[5] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[6] Indiana Univ Sch Med, Dept Pathol & Lab Med, Indianapolis, IN 46202 USA
[7] Indiana Univ, Dept Med & Mol Genet, Indianapolis, IN 46204 USA
基金
中国国家自然科学基金;
关键词
TARGETED THERAPIES; LANDSCAPE; FEATURES; FISH;
D O I
10.1038/s41467-020-15671-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
TFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) generally progresses more aggressively compared with other RCC subtypes, but it is challenging to diagnose TFE3-RCC by traditional visual inspection of pathological images. In this study, we collect hematoxylin and eosin- stained histopathology whole-slide images of 74 TFE3-RCC cases (the largest cohort to date) and 74 clear cell RCC cases (ccRCC, the most common RCC subtype) with matched gender and tumor grade. An automatic computational pipeline is implemented to extract image features. Comparative study identifies 52 image features with significant differences between TFE3-RCC and ccRCC. Machine learning models are built to distinguish TFE3-RCC from ccRCC. Tests of the classification models on an external validation set reveal high accuracy with areas under ROC curve ranging from 0.842 to 0.894. Our results suggest that automatically derived image features can capture subtle morphological differences between TFE3-RCC and ccRCC and contribute to a potential guideline for TFE3-RCC diagnosis. Translocation renal cell carcinoma is an aggressive form of renal cancer that is often misdiagnosed to other subtypes. Here the authors demonstrated that by using machine learning and H&E stained whole-slide images, an accurate diagnose of this particular type of renal cancer can be achieved.
引用
收藏
页数:9
相关论文
共 45 条
[1]   MiT family translocation renal cell carcinoma [J].
Argani, Pedram .
SEMINARS IN DIAGNOSTIC PATHOLOGY, 2015, 32 (02) :103-113
[2]   Everolimus versus sunitinib for patients with metastatic non-clear-cell renal cell carcinoma (ASPEN): a multicentre, open-label, randomised phase 2 trial [J].
Armstrong, Andrew J. ;
Halabi, Susan ;
Eisen, Tim ;
Broderick, Samuel ;
Stadler, Walter M. ;
Jones, Robert J. ;
Garcia, Jorge A. ;
Vaishampayan, Ulka N. ;
Picus, Joel ;
Hawkins, Robert E. ;
Hainsworth, John D. ;
Kollmannsberger, Christian K. ;
Logan, Theodore F. ;
Puzanov, Igor ;
Pickering, Lisa M. ;
Ryan, Christopher W. ;
Protheroe, Andrew ;
Lusk, Christine M. ;
Oberg, Sadie ;
George, Daniel J. .
LANCET ONCOLOGY, 2016, 17 (03) :378-388
[3]   TFE3 Xp11.2 Translocation Renal Cell Carcinoma Mouse Model Reveals Novel Therapeutic Targets and Identifies GPNMB as a Diagnostic Marker for Human Disease [J].
Baba, Masaya ;
Furuya, Mitsuko ;
Motoshima, Takanobu ;
Lang, Martin ;
Funasaki, Shintaro ;
Ma, Wenjuan ;
Sun, Hong-Wei ;
Hasumi, Hisashi ;
Huang, Ying ;
Kato, Ikuma ;
Kadomatsu, Tsuyoshi ;
Satou, Yorifumi ;
Morris, Nicole ;
Karim, Baktiar O. ;
Ileva, Lilia ;
Kalen, Joseph D. ;
Krisna, Luh Ade Wilan ;
Hasumi, Yukiko ;
Sugiyama, Aiko ;
Kurahashi, Ryoma ;
Nishimoto, Koshiro ;
Oyama, Masafumi ;
Nagashima, Yoji ;
Kuroda, Naoto ;
Araki, Kimi ;
Eto, Masatoshi ;
Yao, Masahiro ;
Kamba, Tomomi ;
Suda, Toshio ;
Oike, Yuichi ;
Schmidt, Laura S. ;
Linehan, W. Marston .
MOLECULAR CANCER RESEARCH, 2019, 17 (08) :1613-1626
[4]   Targeted therapies and the treatment of non-clear cell renal cell carcinoma [J].
Bellmunt, J. ;
Dutcher, J. .
ANNALS OF ONCOLOGY, 2013, 24 (07) :1730-1740
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   A structured latent model for ovarian carcinoma subtyping from histopathology slides [J].
BenTaieb, Aicha ;
Li-Chang, Hector ;
Huntsman, David ;
Hamarneh, Ghassan .
MEDICAL IMAGE ANALYSIS, 2017, 39 :194-205
[7]   Renal cell carcinoma with TFE3 translocation and succinate dehydrogenase B mutation [J].
Calio, Anna ;
Grignon, David J. ;
Stohr, Bradley A. ;
Williamson, Sean R. ;
Eble, John N. ;
Cheng, Liang .
MODERN PATHOLOGY, 2017, 30 (03) :407-415
[8]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[9]   Identification of topological features in renal tumor microenvironment associated with patient survival [J].
Cheng, Jun ;
Mo, Xiaokui ;
Wang, Xusheng ;
Parwani, Anil ;
Feng, Qianjin ;
Huang, Kun .
BIOINFORMATICS, 2018, 34 (06) :1024-1030
[10]   Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis [J].
Cheng, Jun ;
Zhang, Jie ;
Han, Yatong ;
Wang, Xusheng ;
Ye, Xiufen ;
Meng, Yuebo ;
Parwani, Anil ;
Han, Zhi ;
Feng, Qianjin ;
Huang, Kun .
CANCER RESEARCH, 2017, 77 (21) :E91-E100