Input-output modelling with decomposed neuro-fuzzy ARX model

被引:9
作者
Golob, Marjan [1 ]
Tovornik, Boris [1 ]
机构
[1] Univ Maribor, Inst Automat, Fac Elect Engn & Comp Sci, SLO-2000 Maribor, Slovenia
关键词
input-output modelling; fuzzy ARX model; neuro-fuzzy system;
D O I
10.1016/j.neucom.2007.02.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new neuro-fuzzy system based model, which is useful for the modelling of nonlinear dynamic systems. The new proposed model constitutes a soft computing method, namely, reasoning with a fuzzy inference system (FIS) and tin optimisation by the neural-network learning algorithm. A structure, named the decomposed neuro-fuzzy ARX model is proposed. This structure is based on decomposition of the FIS. An evolution of a learning algorithm for the decomposed fuzzy model is suggested. A comparative study of dynamic system identification using conventional FIS models and the proposed neuro-fuzzy ARX model is presented for Box-Jenkins data set. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:875 / 884
页数:10
相关论文
共 31 条
[1]   IDENTIFICATION OF NON-LINEAR SYSTEMS - A SURVEY [J].
BILLINGS, SA .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1980, 127 (06) :272-285
[2]  
Box G. E. P, 1970, TIME SERIES ANAL FOR
[3]  
BRANCO PJC, 1993, SECOND IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, P1173, DOI 10.1109/FUZZY.1993.327558
[4]   ON IDENTIFICATION IN FUZZY-SYSTEMS AND ITS APPLICATIONS IN CONTROL-PROBLEMS [J].
CZOGALA, E ;
PEDRYCZ, W .
FUZZY SETS AND SYSTEMS, 1981, 6 (01) :73-83
[5]   Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators [J].
Ding, Yongsheng ;
Ying, Hao ;
Shao, Shihuang .
2000, IEEE, Piscataway, NJ, United States (30) :857-864
[6]  
Elsamahy E, 2003, ENG MED BIOL SOC ANN, P165
[7]   A dynamically-constructed fuzzy neural controller for direct model reference adaptive control of multi-input-multi-output nonlinear processes [J].
Y. Frayman ;
L. Wang .
Soft Computing, 2002, 6 (3) :244-253
[8]  
Golob M., 1999, Intelligent Data Analysis, V3, P127, DOI 10.1016/S1088-467X(99)00011-6
[9]  
Golob M, 2000, IEEE SYS MAN CYBERN, P3520, DOI 10.1109/ICSMC.2000.886554
[10]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685