Urological cancer organoids, patients' avatars for precision medicine: past, present and future

被引:6
作者
Chen, Haotian [1 ,2 ]
Zhang, Wentao [1 ,2 ]
Maskey, Niraj [1 ,2 ]
Yang, Fuhan [1 ,2 ]
Zheng, Zongtai [2 ,3 ]
Li, Cheng [1 ,2 ]
Wang, Ruiliang [1 ,2 ]
Wu, Pengfei [1 ,2 ]
Mao, Shiyu [1 ,2 ]
Zhang, Junfeng [1 ,2 ]
Yan, Yang [1 ,2 ]
Li, Wei [1 ,2 ]
Yao, Xudong [1 ,2 ]
机构
[1] Tongji Univ, Shanghai Peoples Hosp 10, Sch Med, Dept Urol, Shanghai 200072, Peoples R China
[2] Tongji Univ, Sch Med, Urol Canc Inst, Shanghai, Peoples R China
[3] Guangdong Second Prov Gen Hosp, Dept Urol, Guangzhou 510317, Peoples R China
基金
中国国家自然科学基金;
关键词
Organoids; Urological cancer; Organoid applications; Organoid challenges; Personalized medicine; RENAL-CELL CARCINOMA; PLURIPOTENT STEM-CELLS; HUMAN PROSTATE-CANCER; LONG-TERM EXPANSION; BLADDER-CANCER; TUMOR MICROENVIRONMENT; MOLECULAR CHARACTERIZATION; NEPHRON PROGENITORS; LUMINAL SUBTYPES; XENOGRAFT MODELS;
D O I
10.1186/s13578-022-00866-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Urological cancers are common malignant cancers worldwide, with annually increasing morbidity and mortality rates. For decades, two-dimensional cell cultures and animal models have been widely used to study the development and underlying molecular mechanisms of urological cancers. However, they either fail to reflect cancer heterogeneity or are time-consuming and labour-intensive. The recent emergence of a three-dimensional culture model called organoid has the potential to overcome the shortcomings of traditional models. For example, organoids can recapitulate the histopathological and molecular diversity of original cancer and reflect the interaction between cancer and surrounding cells or stroma by simulating tumour microenvironments. Emerging evidence suggests that urine-derived organoids can be generated, which could be a novel non-invasive liquid biopsy method that provides new ideas for clinical precision therapy. However, the current research on organoids has encountered some bottlenecks, such as the lack of a standard culture process, the need to optimize the culture medium and the inability to completely simulate the immune system in vivo. Nonetheless, cell co-culture and organoid-on-a-chip have significant potential to solve these problems. In this review, the latest applications of organoids in drug screening, cancer origin investigation and combined single-cell sequencing are illustrated. Furthermore, the development and application of organoids in urological cancers and their challenges are summarised.
引用
收藏
页数:22
相关论文
共 133 条
[1]   Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors [J].
Agarwal, Supreet ;
Hynes, Paul G. ;
Tillman, Heather S. ;
Lake, Ross ;
Abou-Kheir, Wassim G. ;
Fang, Lei ;
Casey, Orla M. ;
Ameri, Amir H. ;
Martin, Philip L. ;
Yin, Juan Juan ;
Iaquinta, Phillip J. ;
Karthaus, Wouter R. ;
Clevers, Hans C. ;
Sawyers, Charles L. ;
Kelly, Kathleen .
CELL REPORTS, 2015, 13 (10) :2147-2158
[2]   Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro [J].
Agboola, Oluwafemi Solomon ;
Hu, Xinglin ;
Shan, Zhiyan ;
Wu, Yanshuang ;
Lei, Lei .
STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
[3]   Cancer stem cells as a therapeutic target in bladder cancer [J].
Aghaalikhani, Nazi ;
Rashtchizadeh, Nadereh ;
Shadpour, Pejman ;
Allameh, Abdolamir ;
Mahmoodi, Marzieh .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (04) :3197-3206
[4]   Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention [J].
Akerfelt, Malin ;
Bayramoglu, Neslihan ;
Robinson, Sean ;
Toriseva, Mervi ;
Schukov, Hannu-Pekka ;
Harma, Ville ;
Virtanen, Johannes ;
Sormunen, Raija ;
Kaakinen, Mika ;
Kannala, Juho ;
Eklund, Lauri ;
Heikkila, Janne ;
Nees, Matthias .
ONCOTARGET, 2015, 6 (30) :30035-30056
[5]   The tumor microenvironment at a glance [J].
Balkwill, Frances R. ;
Capasso, Melania ;
Hagemann, Thorsten .
JOURNAL OF CELL SCIENCE, 2012, 125 (23) :5591-5596
[6]   FGF9 and FGF20 Maintain the Stemness of Nephron Progenitors in Mice and Man [J].
Barak, Hila ;
Huh, Sung-Ho ;
Chen, Shuang ;
Jeanpierre, Cecile ;
Martinovic, Jelena ;
Parisot, Melanie ;
Bole-Feysot, Christine ;
Nitschke, Patrick ;
Salomon, Remi ;
Antignac, Corinne ;
Ornitz, David M. ;
Kopan, Raphael .
DEVELOPMENTAL CELL, 2012, 22 (06) :1191-1207
[7]   Three Dimensional Culture of Human Renal Cell Carcinoma Organoids [J].
Batchelder, Cynthia A. ;
Martinez, Michele L. ;
Duru, Nadire ;
Meyers, Frederick J. ;
Tarantal, Alice F. .
PLOS ONE, 2015, 10 (08)
[8]   Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets [J].
Beltran, Himisha ;
Rickman, David S. ;
Park, Kyung ;
Chae, Sung Suk ;
Sboner, Andrea ;
MacDonald, Theresa Y. ;
Wang, Yuwei ;
Sheikh, Karen L. ;
Terry, Stephane ;
Tagawa, Scott T. ;
Dhir, Rajiv ;
Nelson, Joel B. ;
de la Taille, Alexandre ;
Allory, Yves ;
Gerstein, Mark B. ;
Perner, Sven ;
Pienta, Kenneth J. ;
Chinnaiyan, Arul M. ;
Wang, Yuzhuo ;
Collins, Colin C. ;
Gleave, Martin E. ;
Demichelis, Francesca ;
Nanus, David M. ;
Rubin, Mark A. .
CANCER DISCOVERY, 2011, 1 (06) :487-495
[9]   Cell fate specification and differentiation in the adult mammalian intestine [J].
Beumer, Joep ;
Clevers, Hans .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (01) :39-53
[10]   Multipotential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology [J].
Bharadwaj, Shantaram ;
Liu, Guihua ;
Shi, Yingai ;
Wu, Rongpei ;
Yang, Bin ;
He, Tongchuan ;
Fan, Yuxin ;
Lu, Xinyan ;
Zhou, Xiaobo ;
Liu, Hong ;
Atala, Anthony ;
Rohozinski, Jan ;
Zhang, Yuanyuan .
STEM CELLS, 2013, 31 (09) :1840-1856