Strengthening and Weakening by Dislocations in Monolayer MoS2

被引:26
作者
Yang, Li [1 ,2 ]
Liu, Jinjie [1 ,2 ]
Lin, Yanwen [1 ,2 ]
Xu, Ke [1 ,2 ]
Cao, Xuezheng [1 ,2 ]
Zhang, Zhisen [1 ,2 ]
Wu, Jianyang [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Jiujiang Res Inst, Res Inst Biomimet & Soft Matter, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Soft Funct Mat Res, Xiamen 361005, Peoples R China
[3] Norwegian Univ Sci & Technol NTNU, NTNU Nanomech Lab, N-7491 Trondheim, Norway
基金
中国国家自然科学基金;
关键词
GRAIN-BOUNDARIES; MECHANICAL-PROPERTIES; ELECTRONIC-PROPERTIES; BORON-NITRIDE; LINE DEFECTS; DYNAMICS; CRACK;
D O I
10.1021/acs.chemmater.1c02797
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dislocations govern the properties of crystals. Yet, how pentagon-heptagon (5 vertical bar 7) pairs in grain boundaries (GBs) affect the mechanical properties of MoS2 remains poorly known. Using atomistic simulations and the continuum disclination dipole model, we show that depending on the tilt angle and 5 vertical bar 7 dislocation arrangement, MoS2 GB strength can be enhanced or reduced with the tilt angle. For zigzag-tilt GBs primarily composed of Mo5 vertical bar 7 + S5 vertical bar 7 dislocations, GB strength monotonically increases as the square of the tilt angle. For armchair-tilt GBs with Mo5|7 or S5 vertical bar 7 dislocations, however, the trend of GB strength breaks down, as dislocations are unevenly spaced. Moreover, mechanical failure initiates at the bond shared by 5 vertical bar 7 rings, in contrast to graphene in which failure occurs at the bond shared by 6 vertical bar 7 rings. This work provides new insights into the mechanical design of synthetic transition metal dichalcogenide crystals via dislocation engineering.
引用
收藏
页码:8758 / 8767
页数:10
相关论文
共 63 条
[1]   Mechanical Properties of Monolayer MoS2 with Randomly Distributed Defects [J].
Akhter, Mohammed Javeed ;
Kus, Waclaw ;
Mrozek, Adam ;
Burczynski, Tadeusz .
MATERIALS, 2020, 13 (06)
[2]   Electrocatalytic properties of CoS2/MoS2/rGO as a non-noble dual metal electrocatalyst: The investigation of hydrogen evolution and methanol oxidation [J].
Askari, Mohammad Bagher ;
Salarizadeh, Parisa ;
Seifi, Majid ;
Rozati, Seyed Mohammad .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 135
[3]   Molecular Dynamics Simulation of Nanocrack Propagation in Single-Layer MoS2 Nanosheets [J].
Bao, Hongwei ;
Huang, Yuhong ;
Yang, Zhi ;
Sung, Yunjin ;
Bai, Yu ;
Miao, Yaping ;
Chu, Paul K. ;
Xu, Kewei ;
Ma, Fei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (02) :1351-1360
[4]   Grain-size dependence of mechanical properties in polycrystalline boron-nitride: a computational study [J].
Becton, Matthew ;
Wang, Xianqiao .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (34) :21894-21901
[5]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[6]   An adaptive multiscale method for quasi-static crack growth [J].
Budarapu, Pattabhi R. ;
Gracie, Robert ;
Bordas, Stephane P. A. ;
Rabczuk, Timon .
COMPUTATIONAL MECHANICS, 2014, 53 (06) :1129-1148
[7]   Large and Tunable Photothermoelectric Effect in Single-Layer MoS2 [J].
Buscema, Michele ;
Barkelid, Maria ;
Zwiller, Val ;
van der Zant, Herre S. J. ;
Steele, Gary A. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2013, 13 (02) :358-363
[8]   Elasticity of MoS2 Sheets by Mechanical Deformation Observed by in Situ Electron Microscopy [J].
Casillas, Gilberto ;
Santiago, Ulises ;
Barron, Hector ;
Alducin, Diego ;
Ponce, Arturo ;
Jose-Yacaman, Miguel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (01) :710-715
[9]   Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS2 under tension via atomistic simulations [J].
Dang, Khanh Q. ;
Spearot, Douglas E. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (01)
[10]   The effect of grain boundaries on the mechanical properties and failure behavior of hexagonal boron nitride sheets [J].
Ding, Ning ;
Wu, Chi-Man Lawrence ;
Li, Hui .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (43) :23716-23722