Adaptive community detection incorporating topology and content in social networks

被引:52
|
作者
Qin, Meng [1 ]
Jin, Di [2 ]
Lei, Kai [1 ]
Gabrys, Bogdan [3 ]
Musial-Gabrys, Katarzyna [3 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen Key Lab Informat Centr Networking & Bloc, Shenzhen, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
[3] Univ Technol Sydney, Sch Software, Adv Analyt Inst, Sydney, NSW, Australia
基金
国家重点研发计划;
关键词
Social network analysis; Community detection; Semantic description; Non-negative matrix factorization; Robustness; OBJECTS;
D O I
10.1016/j.knosys.2018.07.037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In social network analysis, community detection is a basic step to understand the structure and function of networks. Some conventional community detection methods may have limited performance because they merely focus on the networks' topological structure. Besides topology, content information is another significant aspect of social networks. Although some state-of-the-art methods started to combine these two aspects of information for the sake of the improvement of community partitioning, they often assume that topology and content carry similar information. In fact, for some examples of social networks, the hidden characteristics of content may unexpectedly mismatch with topology. To better cope with such situations, we introduce a novel community detection method under the framework of non negative matrix factorization (NMF). Our proposed method integrates topology as well as content of networks and has an adaptive parameter (with two variations) to effectively control the contribution of content with respect to the identified mismatch degree. Based on the disjoint community partition result, we also introduce an additional overlapping community discovery algorithm, so that our new method can meet the application requirements of both disjoint and overlapping community detection. The case study using real social networks shows that our new method can simultaneously obtain the community structures and their corresponding semantic description, which is helpful to understand the semantics of communities. Related performance evaluations on both artificial and real networks further indicate that our method outperforms some state-of-the-art methods while exhibiting more robust behavior when the mismatch between topology and content is observed. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 356
页数:15
相关论文
共 50 条
  • [11] Genetic Algorithms for Community Detection in Social Networks
    Hafez, Ahmed Ibrahem
    Ghali, Neveen I.
    Hassanien, Aboul Ella
    Fahmy, Aly A.
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 460 - 465
  • [12] A Dynamic Algorithm for Community Detection in Social Networks
    Kong, Bing
    Chen, Hongmei
    Liu, Weiyi
    Zhou, Lihua
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 350 - 354
  • [13] An Overview of Community Detection Algorithms in Social Networks
    Varsha, Kulkarni
    Patil, Kiran Kumari
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 121 - 126
  • [14] Community Detection in Social Networks
    Su, Chang
    Wang, Yukun
    Yu, Yue
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 2174 - 2177
  • [15] An Adaptive Approximation Algorithm for Community Detection in Social Network
    Sutaria, Kamal
    Joshi, Dipesh
    Bhensdadiya, C. K.
    Khalpada, Kruti
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION TECHNOLOGY CICT 2015, 2015, : 785 - 788
  • [16] Community Detection in Social Networks Using Affinity Propagation with Adaptive Similarity Matrix
    Taheri, Sona
    Bouyer, Asgarali
    BIG DATA, 2020, 8 (03) : 189 - 202
  • [17] Community detection in social networks based on fire propagation
    Pattanayak, Himansu Sekhar
    Sangal, Amrit Lal
    Verma, Harsh K.
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 31 - 48
  • [18] SocioRank*: A community and role detection method in social networks
    Rafique, Wajid
    Khan, Maqbool
    Sarwar, Nadeem
    Dou, Wanchun
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 76 : 122 - 132
  • [19] Probabilistic Community Detection in Social Networks
    Souravlas, Stavros
    Anastasiadou, Sofia D.
    Economides, Theodore
    Katsavounis, Stefanos
    IEEE ACCESS, 2023, 11 : 25629 - 25641
  • [20] Hidden community detection in social networks
    He, Kun
    Li, Yingru
    Soundarajan, Sucheta
    Hoperoft, John E.
    INFORMATION SCIENCES, 2018, 425 : 92 - 106