Raman spectroscopy of the eight natural carbonate minerals of calcite structure

被引:94
作者
Dufresne, William J. B. [1 ]
Rufledt, Carson J. [1 ]
Marshall, Craig P. [1 ,2 ]
机构
[1] Univ Kansas, Dept Geol, Earth Energy & Environm Ctr, 1414 Naismith Dr, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Chem, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
carbonate minerals; calcite group; otavite; spherocobaltite; gaspeite; SPECTRA;
D O I
10.1002/jrs.5481
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
To date, only five natural carbonate minerals of calcite structure have been studied by Raman spectroscopy. These include calcite (CaCO3), magnesite (MgCO3), siderite (FeCO3), smithsonite (ZnCO3), and rhodochrosite (MnCO3). Thus far, only synthetic compounds of otavite (CdCO3), spherocobaltite (CoCO3), and gaspeite (NiCO3) have been investigated by Raman spectroscopy. However, the Raman spectra of natural otavite, spherocobaltite, and gaspeite have yet to be interpreted and compared with the Raman spectra of the other five natural carbonate minerals of calcite structure. This work has been undertaken to fill this gap and provide a comparison and interpretation of Raman spectra representative of all the eight natural carbonate minerals of calcite structure. The data here show that the carbonate E-g (T) phonon shifts are due to influences from the nearest neighbor distance; that is, M-O, and different ionic radii of the divalent metal cation, as shown graphically by a strong correlation (r(2) = 0.87 and 0.91, respectively). Using this graphical approach, we have developed a Raman spectroscopic model based on the equation, y = -2.067x + 356.2 (+/- 5 pm) to calculate the ionic radii of the divalent metal cation present within the mineral and hence affording the identification and discrimination of calcite-group minerals based on the band position of the E-g (T) mode.
引用
收藏
页码:1999 / 2007
页数:9
相关论文
共 31 条
[1]  
Barton I. F., 2014, CAN MINERAL, V56, P113
[2]  
Bhagavantam S., 1939, P INDIAN ACAD SCI MA, V3, P224
[3]  
BISCHOFF WD, 1985, AM MINERAL, V70, P581
[4]   Raman spectroscopy as a tool for magnesium estimation in Mg-calcite [J].
Borromeo, Laura ;
Zimmermann, Udo ;
Ando, Sergio ;
Coletti, Giovanni ;
Bersani, Danilo ;
Basso, Daniela ;
Gentile, Paolo ;
Schulz, Bernhard ;
Garzanti, Eduardo .
JOURNAL OF RAMAN SPECTROSCOPY, 2017, 48 (07) :983-992
[5]   The influence on Fe content on Raman spectra and unit cell parameters of magnesite-siderite solid solutions [J].
Boulard, E. ;
Guyot, F. ;
Fiquet, G. .
PHYSICS AND CHEMISTRY OF MINERALS, 2012, 39 (03) :239-246
[6]  
Buzgar N., 2009, Analele Stiintifice ale Universitatii Al. I. CuzaIasi, V55, P97
[7]   The deep carbon cycle and melting in Earth's interior [J].
Dasgupta, Rajdeep ;
Hirschmann, Marc M. .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 298 (1-2) :1-13
[8]  
Effenberger H., 1981, Z KRISTALLOG CRYST M, V233, P1
[9]   Raman spectroscopy of smithsonite [J].
Frost, Ray L. ;
Hales, Matt C. ;
Wain, Daria L. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (01) :108-114
[10]   An application of near infrared spectroscopy to the study of carbonate minerals - smithsonite, rhodochrosite, sphaerocobaltite and cadmium smithsonite [J].
Frost, Ray L. ;
Reddy, B. Jagannadha ;
Wain, Daria L. ;
Hales, Matthew C. .
JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2006, 14 (05) :317-324