Powers in products of terms of Pell's and Pell-Lucas sequences

被引:17
作者
Bravo, Jhon J. [1 ]
Das, Pranabesh [2 ]
Guzman, Sergio [3 ]
Laishram, Shanta [2 ]
机构
[1] Univ Cauca, Dept Matemat, Popayan, Colombia
[2] India Stat Inst, Stat Math Unit, New Delhi 110016, India
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
关键词
Recurrence sequences; Pell sequences; Pell-Lucas sequences; arithmetic progressions; GREATEST PRIME DIVISOR; DIOPHANTINE EQUATIONS;
D O I
10.1142/S1793042115500682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the usual Pell and Pell-Lucas sequences. The Pell sequence (u(n))(n=0)(infinity) is given by the recurrence u(n) = 2u(n-1)+ u(n-2) with initial condition u(0) = 0, u(1) = 1 and its associated Pell-Lucas sequence (v(n))(n=0)(infinity) is given by the recurrence v(n) = 2v(n-1) + v(n-2) with initial condition v(0) = 2, v(1) = 2. Let n, d, k, y, m be positive integers with m >= 2, y >= 2 and gcd( n, d) = 1. We prove that the only solutions of the Diophantine equation u(n)u(n+d) ... u(n+(k-1)d) = y(m) are given by u(7) = 13(2) and u(1)u(7) = 13(2) and the equation v(n)v(n+d) ... v(n+(k-1)d) = y(m) has no solution. In fact, we prove a more general result.
引用
收藏
页码:1259 / 1274
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1990, GREATEST PRIME FACTO
[2]   Ternary diophantine equations via galois representations and modular forms [J].
Bennett, MA ;
Skinner, CM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01) :23-54
[3]  
BICKNELL M, 1975, FIBONACCI QUART, V13, P345
[4]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[5]   Perfect Pell powers [J].
Cohn, JHE .
GLASGOW MATHEMATICAL JOURNAL, 1996, 38 :19-20
[6]  
De Weger B. M. M., 1989, CWI Tracts, V65
[7]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[8]  
Horadam A. F, 1994, Ulam Quarterly, V3, P34
[9]  
Kilic E, 2005, BOL SOC MAT MEX, V11, P163
[10]  
Koshy T., 2001, Pure Appl. Math. (N. Y.)