共 50 条
Type three secretion system in Salmonella Typhimurium: the key to infection
被引:28
作者:
dos Santos, Anamaria M. P.
[1
]
Ferrari, Rafaela G.
[1
,2
]
Conte-Junior, Carlos A.
[1
,2
,3
]
机构:
[1] Univ Fed Fluminense, Dept Food Technol, Fac Vet, Mol & Analyt Lab Ctr, Niteroi, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Food Sci Program, Inst Chem, Rio De Janeiro, Brazil
[3] Fundacao Oswaldo Cruz, Natl Inst Hlth Qual Control, Rio De Janeiro, Brazil
关键词:
Injectosome;
Enterobacteriaceae;
Protein secretion;
Needle complex;
Effector proteins;
T3SS;
PATHOGENICITY ISLAND 2;
FLAGELLAR EXPORT APPARATUS;
DETERMINES NEEDLE LENGTH;
PROTEIN SECRETION;
INNER-ROD;
SUBSTRATE-SPECIFICITY;
INVASION GENES;
STRUCTURAL INSIGHTS;
EFFECTOR PROTEINS;
EPITHELIAL-CELLS;
D O I:
10.1007/s13258-020-00918-8
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Background Type Three Secretion Systems (T3SS) are nanomachine complexes, which display the ability to inject effector proteins directly into host cells. This skill allows for gram-negative bacteria to modulate several host cell responses, such as cytoskeleton rearrangement, signal transduction, and cytokine production, which in turn increase the pathogenicity of these bacteria. The Salmonella enterica subsp. enterica serovar Typhimurium (ST) T3SS has been the most characterized so far. Among gram-negative bacterium, ST is one of enterica groups predicted to have two T3SSs activated during different phases of infection. Objective To comprise current information about ST T3SS structure and function as well as an overview of its assembly and hierarchical regulation. Methods With a brief and straightforward reading, this review summarized aspects of both ST T3SS, such as its structure and function. That was possible due to the development of novel techniques, such as X-ray crystallography, cryoelectron microscopy, and nano-gold labelling, which also elucidated the mechanisms behind T3SS assembly and regulation, which was addressed in this review. Conclusion This paper provided fundamental overview of ST T3SS assembly and regulation, besides summarized the structure and function of this complex. Due to T3SS relevance in ST pathogenicity, this complex could become a potential target in therapeutic studies as this nanomachine modulates the infection process.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条