Periodic Boundary Condition for Von Neumann CA with Radius 2

被引:1
作者
Rajasekar, M. [1 ]
Anbu, R. [2 ]
机构
[1] Annamalai Univ, FEAT, Math Sect, Annamalainagar 608002, Tamil Nadu, India
[2] Annamalai Univ, Dept Math, Annamalainagar 608002, Tamil Nadu, India
来源
RECENT TRENDS IN PURE AND APPLIED MATHEMATICS | 2019年 / 2177卷
关键词
Two-dimensional Cellular automata; Von-Neumann naighbohood; Transition rule matrix; Matrix algebra; Null boundary condition; Reversibility; structure of periodic condition; CELLULAR-AUTOMATA;
D O I
10.1063/1.5135251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cellular Automata have rich computational properties and provide many models in mathematical and physical processes. In this paper, We study the characterization of two dimensional linear Cellular Automata defined by the Von Neumann with neighborhood radius 2 of periodic boundary conditions over the field Z(3). Transition rule matrix for periodic boundary condition and reversibility of Von Neumann with neighborhood cellular automata radius 2 of periodic boundary condition is studied.
引用
收藏
页数:10
相关论文
共 10 条
[1]   Characterisation of a particular hybrid transformation of two-dimensional cellular automata [J].
Chattopadhyay, P ;
Choudhury, PP ;
Dihidar, K .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (5-6) :207-216
[2]   REVERSIBILITY OF 2D CELLULAR AUTOMATA IS UNDECIDABLE [J].
KARI, J .
PHYSICA D, 1990, 45 (1-3) :379-385
[3]   VLSI architecture of a cellular automata machine [J].
Khan, AR ;
Choudhury, PP ;
Dihidar, K ;
Mitra, S ;
Sarkar, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (05) :79-94
[4]  
Neumann J. V., 1966, Theory of Self-Reproducing Automata
[5]  
Rajasekar M, J UNPUB, V2
[6]  
Sahin U., 2016, APPL MATH MODEL, P1
[7]  
Shahamatnia Ehsan, 2012, TRENDS APPL SCI RES, V7, P96
[8]   Structure and reversibility of 2D hexagonal cellular automata [J].
Siap, Irfan ;
Akin, Hasan ;
Uguz, Selman .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) :4161-4169
[9]   STATISTICAL-MECHANICS OF CELLULAR AUTOMATA [J].
WOLFRAM, S .
REVIEWS OF MODERN PHYSICS, 1983, 55 (03) :601-644
[10]   Reversibility of general 1D linear cellular automata over the binary field Z2 under null boundary conditions [J].
Yang, Bin ;
Wang, Chao ;
Xiang, Aiyun .
INFORMATION SCIENCES, 2015, 324 :23-31