The distribution of the maximum of a first-order moving average: The discrete casex

被引:0
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Ind Res Ltd, Appl Math Grp, Lower Hutt, New Zealand
[2] Univ Manchester, Sch Math, Manchester, Lancs, England
关键词
Discrete; Maximum; Moving average; EXTREMES; POISSON; MODELS;
D O I
10.1080/03610926.2014.927499
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Extreme value theory for discrete observations is very much underdeveloped. Here, we derive exact expressions for the cumulative distribution function of M-n, the maximum of a sequence of n discrete observations from a moving average of order one. A solution appropriate for large n takes the form P-r (M-n <= x) = Sigma(j=1)' beta(jx) nu(n)(jx), where {nu(jx)} are the eigenvalues of a certain matrix, and I depends on the number of possible values of the underlying random variables.
引用
收藏
页码:4729 / 4744
页数:16
相关论文
共 27 条
[3]  
ANDERSON CW, 1997, ANN APPL PROBAB, V7, P953
[4]  
[Anonymous], J KOREAN STAT SOC
[5]  
[Anonymous], 2003, EXTREMES, DOI DOI 10.1007/S10687-004-4725-Z
[6]  
[Anonymous], 1964, HDB MATH FUNCTIONS
[7]   Extremal limit laws for a class of bivariate Poisson vectors [J].
Coles, S ;
Pauli, F .
STATISTICS & PROBABILITY LETTERS, 2001, 54 (04) :373-379
[8]  
Gusak D. V., 1995, RANDOM OPERATORS STO, V3, P87
[9]   A note on the extremes of a particular moving average count data model [J].
Hall, A ;
Moreira, O .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (02) :135-141
[10]   Extremes of sub-sampled integer-valued moving average models with heavy-tailed innovations [J].
Hall, A ;
Scotto, MG .
STATISTICS & PROBABILITY LETTERS, 2003, 63 (01) :97-105