Structural, Optical, and Magnetic Properties of Gd Doped CdTe Quantum Dots for Magnetic Imaging Applications

被引:2
|
作者
Shanmugapriya, V [1 ]
Bharathi, S. [2 ]
Esakkinaveen, D. [3 ]
Arunpandiyan, S. [1 ]
Selvakumar, B. [1 ]
Sasikala, G. [4 ]
Jayavel, R. [4 ]
Arivarasan, A. [1 ]
机构
[1] Kalasalingam Acad Res & Educ, Int Res Ctr, Dept Phys, Krishnankoil 626126, Tamil Nadu, India
[2] NGSeq Analyt LLC, San Diego, CA USA
[3] Gandhigram Rural Inst, Dept Chem, Dindiugul 624302, Tamil Nadu, India
[4] Anna Univ, Crystal Growth Ctr, Chennai 600025, Tamil Nadu, India
关键词
ROOM-TEMPERATURE FERROMAGNETISM; SEMICONDUCTOR; CDSE; PERFORMANCES; NANOCRYSTALS; QDS;
D O I
10.1149/2162-8777/ac4bad
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Induced room-temperature ferromagnetic behavior (RT-MF) of Gd doped CdTe (GDC) quantum dots (QDs) is reported. Pure CdTe QDs were synthesized by colloidal route using thiol stabilizers in an aqueous medium. The magnetic moments were induced by the inclusion of Gd in CdTe QDs. The effect of Gd ion substitution in CdTe lattices was characterized by X-ray diffraction which confirmed the formation of cubic zinc blende structure. The optical response of the prepared QDs was studied via UV-vis absorption spectroscopy, which indicated that Gd ion substitution alters the optical response toward a longer wavelength; this is further confirmed by corresponding emission analysis through Fluorescence emission spectroscopy. Quantum yield measurements confirmed that the GDC QDs give better quantum yield than pure CdTe QDs through the substitution of Gd ions. The formation of CdTe QDs with Gd ion substitution was confirmed by binding energy analysis through X-ray photoelectron spectroscopy. RT-MF of GDC QDs was revealed by vibrating-sample magnetometer measurement. Hence, the prepared GDC QDs were determined to be a vital DMS material for room-temperature spintronics applications.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Intraband magneto-optical properties of magnetic quantum dots
    Savic, Ivana
    Vukmirovic, Nenad
    PHYSICAL REVIEW B, 2007, 76 (24)
  • [42] OPTICAL-PROPERTIES OF QUANTUM DOTS IN MAGNETIC-FIELD
    GOVOROV, AO
    CHAPLIK, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1991, 99 (06): : 1853 - 1870
  • [43] Effect of Co dopant on structural, optical, and magnetic properties of CeO2 quantum dots
    S. Mohanapriya
    P. Priyadharshini
    P. A. Shobika
    M. Ponnar
    K. Pushpanathan
    Journal of the Australian Ceramic Society, 2023, 59 : 459 - 480
  • [44] Effect of Co dopant on structural, optical, and magnetic properties of CeO2 quantum dots
    Mohanapriya, S.
    Priyadharshini, P.
    Shobika, P. A.
    Ponnar, M.
    Pushpanathan, K.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2023, 59 (02) : 459 - 480
  • [45] Influence of gadolinium (III) doping on the structural, optical, magnetic, and photocatalytic properties of CdS quantum dots
    Poornaprakash, B.
    Chalapathi, U.
    Poojitha, P. T.
    Vattikuti, S. V. Prabhakar
    Park, Si-Hyun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 100 : 73 - 78
  • [46] Magnetic quantum dots for multimodal imaging
    Koole, Rolf
    Mulder, Willem J. M.
    van Schooneveld, Matti M.
    Strijkers, Gustav J.
    Meijerink, Andries
    Nicolay, Klaas
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2009, 1 (05) : 475 - 491
  • [47] Magnetic quantum dots for biomedical applications
    Winter, Jessica
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [48] CdTe/ZnTe quantum dots - growth and optical properties
    Mackowski, S
    THIN SOLID FILMS, 2002, 412 (1-2) : 96 - 106
  • [49] Optical and structural properties of rare earth doped GaN quantum dots
    Andreev, T
    Hori, Y
    Biquard, X
    Monroy, E
    Jalabert, D
    Farchi, A
    Tanaka, M
    Oda, O
    Dang, LS
    Daudin, B
    SUPERLATTICES AND MICROSTRUCTURES, 2004, 36 (4-6) : 707 - 712
  • [50] Effect of ZnTe buffer layer on the structural and optical properties of CdTe/ZnTe quantum dots
    Lee, H. S.
    Park, H. L.
    Kim, T. W.
    JOURNAL OF CRYSTAL GROWTH, 2006, 293 (01) : 27 - 31