Optimal Continuous Variable Quantum Teleportation with Limited Resources

被引:40
作者
Liuzzo-Scorpo, Pietro [1 ]
Mari, Andrea [2 ,3 ]
Giovannetti, Vittorio [2 ,3 ]
Adesso, Gerardo [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Univ Pk, Nottingham NG7 2RD, England
[2] Scuola Normale Super Pisa, NEST, I-56127 Pisa, Italy
[3] CNR, Ist Nanosci, I-56127 Pisa, Italy
基金
欧洲研究理事会;
关键词
COMMUNICATION RATES; CHANNELS; INFORMATION; STATES;
D O I
10.1103/PhysRevLett.119.120503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a certain amount of entanglement available as a resource, what is the most efficient way to accomplish a quantum task? We address this question in the relevant case of continuous variable quantum teleportation protocols implemented using two-mode Gaussian states with a limited degree of entanglement and energy. We first characterize the class of single-mode phase-insensitive Gaussian channels that can be simulated via a Braunstein-Kimble protocol with nonunit gain and minimum shared entanglement, showing that infinite energy is not necessary apart from the special case of the quantum limited attenuator. We also find that apart from the identity, all phase-insensitive Gaussian channels can be simulated through a two-mode squeezed state with finite energy, albeit with a larger entanglement. We then consider the problem of teleporting single-mode coherent states with Gaussian-distributed displacement in phase space. Performing a geometrical optimization over phase-insensitive Gaussian channels, we determine the maximum average teleportation fidelity achievable with any finite entanglement and for any realistically finite variance of the input distribution.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states [J].
Adesso, G ;
Illuminati, F .
PHYSICAL REVIEW A, 2005, 72 (03)
[2]   Equivalence between entanglement and the optimal fidelity of continuous variable teleportation [J].
Adesso, G ;
Illuminati, F .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[3]   Extremal entanglement and mixedness in continuous variable systems [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2004, 70 (02) :022318-1
[4]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[5]   Continuous variable teleportation as a generalized thermalizing quantum channel [J].
Ban, M ;
Sasaki, M ;
Takeoka, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (28) :L401-L405
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]   Experimental investigation of continuous-variable quantum teleportation [J].
Bowen, WP ;
Treps, N ;
Buchler, BC ;
Schnabel, R ;
Ralph, TC ;
Bachor, HA ;
Symul, T ;
Lam, PK .
PHYSICAL REVIEW A, 2003, 67 (03)
[8]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[9]   Criteria for continuous-variable quantum teleportation [J].
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ .
JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) :267-278
[10]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872