An electrochemical sensing method based on CRISPR/Cas12a system and hairpin DNA probe for rapid and sensitive detection of Salmonella Typhimurium

被引:33
|
作者
He, Yawen [1 ,4 ]
Jia, Fei [1 ,3 ]
Sun, Yuxin [1 ]
Fang, Weihuan [2 ]
Li, Yanbin [3 ]
Chen, Juhong [4 ]
Fu, Yingchun [1 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Coll Anim Sci, Hangzhou 310058, Peoples R China
[3] Univ Arkansas, Dept Biol & Agr Engn, Fayetteville, AR 72701 USA
[4] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA
基金
中国国家自然科学基金;
关键词
CRISPR; Hairpin DNA; DNA detection; Electrochemical biosensor; Salmonella Typhimurium; Food safety; NANOPARTICLES; SENSOR;
D O I
10.1016/j.snb.2022.132301
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Salmonella Typhimurium (S. Typhimurium) is regarded as a major cause of foodborne diseases, which has been identified as a server threat to public health. Herein, an electrochemical sensing method was developed to detect S. Typhimurium in combination with polymerase chain reaction (PCR) and CRISPR/Cas12a (E-CRISPR biosensor). The target DNA extracted from the bacteria was amplified by PCR first, followed by the second amplification through the activation of collateral cleavage activity of Cas12a against signaling hairpin DNA probes, causing the release of electrochemical labels and a dramatic current decrease. The design of hairpin DNA on the electrode also reduced the steric hindrance effect for better Cas12a collateral cleavage efficiency, leading to improved detection performance. Under the optimized conditions, the proposed E-CRISPR biosensor allowed the sensitive detection of S. Typhimurium in a linear range from 6.7 x 10(1) to 6.7 x 10(5) CFU/mL with a limit of detection of 55 CFU/mL in pure culture. In addition, the E-CRISPR biosensor enables the detection of S. Typhimurium in spiked poultry meat with excellent accuracy and sensitivity. This CRISPR-based biosensor has the potential to provide an alternative way for the detection of foodborne pathogens in the food supply chain.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Lateral flow biosensor based on LAMP-CRISPR/Cas12a for sensitive and visualized detection of Salmonella spp.
    Lee, So -Young
    Oh, Se-Wook
    FOOD CONTROL, 2023, 145
  • [32] A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly
    Wang, Jiaojiao
    Xia, Qianfeng
    Wu, Jie
    Lin, Yingzi
    Ju, Huangxian
    ANALYTICA CHIMICA ACTA, 2021, 1187
  • [33] Rapid Nucleic Acid Detection of Listeria monocytogenes Based on RAA-CRISPR Cas12a System
    Yang, Yujuan
    Kong, Xiangxiang
    Yang, Jielin
    Xue, Junxin
    Niu, Bing
    Chen, Qin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [34] A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system
    Xiao, Yiran
    Ren, Honglin
    Wang, Han
    Zou, Deying
    Liu, Yixin
    Li, Haosong
    Hu, Pan
    Li, Yansong
    Liu, Zengshan
    Lu, Shiying
    TALANTA, 2023, 259
  • [35] Split activator of CRISPR/Cas12a for direct and sensitive detection of microRNA
    He, Wen
    Li, Xinyu
    Li, Xinmin
    Guo, Minghui
    Zhang, Mengxuan
    Hu, Ruiwei
    Li, Menghan
    Ding, Shijia
    Yan, Yurong
    ANALYTICA CHIMICA ACTA, 2024, 1303
  • [36] An ultra-sensitive test strip combining with RPA and CRISPR/Cas12a system for the rapid detection of GM crops
    Wang, Jinbin
    Wang, Yu
    Liu, Hua
    Hu, Xiuwen
    Zhang, Minghao
    Liu, Xiaofeng
    Ye, Hailong
    Zeng, Haijuan
    FOOD CONTROL, 2022, 144
  • [37] Detection for MiRNA21 by combining CRISPR/Cas12a with catalytic hairpin assembly
    Li, Tian
    Zou, Hongmin
    Chen, Fei
    You, Yun
    Zhang, Liping
    Chinese Journal of Analysis Laboratory, 2024, 43 (04) : 559 - 563
  • [38] An RPA-CRISPR/Cas12a based platform for rapid, sensitive, and visual detection of Apis mellifera filamentous virus
    Guo, Ya
    Ge, Tingting
    Wang, Qiang
    Liu, Tong-Xian
    Li, Zhaofei
    INSECT SCIENCE, 2025,
  • [39] A label-free electrochemical sensor for the detection of two kinds of targets based on CRISPR/Cas12a system
    Liu, Bo
    Lu, Weishen
    Huang, Yibo
    Zhang, Xiaoru
    Yuan, Xunyi
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 406
  • [40] A Rapid RPA-CRISPR/Cas12a Detection Method for Adulteration of Goat Milk Powder
    Huang, Shuqin
    Liu, Yan
    Zhang, Xu
    Gai, Zuoqi
    Lei, Hongtao
    Shen, Xing
    FOODS, 2023, 12 (08)