Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China

被引:9
作者
Pan, Jiya [1 ,2 ,3 ]
Wang, Cheng [4 ]
Wang, Jinliang [1 ,2 ,3 ]
Gao, Fan [5 ]
Liu, Qianwei [1 ,2 ,3 ]
Zhang, Jianpeng [1 ,2 ,3 ]
Deng, Yuncheng [1 ,2 ,3 ]
机构
[1] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China
[2] Key Lab Resources & Environm Remote Sensing Univ, Kunming 650500, Yunnan, Peoples R China
[3] Ctr Geospatial Informat Engn & Technol Yunnan Pro, Kunming 650500, Yunnan, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[5] Yunnan Minzu Univ, Org Dept, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Photonics; Feature extraction; Earth; Artificial satellites; Correlation; Random forests; Feature selection; Ice; Cloud; and land Elevation Satellite-2 (ICESat-2); land cover classification; Landsat; 8; random forest (RF); ICESAT/GLAS;
D O I
10.1109/LGRS.2022.3209725
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land cover classification is important for effectively protecting and developing land resources. This study investigates the joint use of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data and Landsat 8 Operational Land Imager (OLI) data in land cover classification with random forest (RF) in Yunnan province, China, to explore the application potential of photon counting light detection and ranging (LiDAR) data in land cover classification. The contributions of this letter are: 1) the joint use of ICESat-2 and Landsat 8 image datasets can provide better land cover classification accuracy, achieving 10% and 3% accuracy gains for five types (forest/low-vegetation/water/construction-land/barren) and four types (vegetation/water/construction-land/barren)of land cover, respectively; 2) the proposed feature selection improves the overall accuracy by 1.5% and 1% for five and four land cover types, respectively; 3) the accuracy of the land cover classification reached 82% and 98% for five and four types of land cover; and 4) the terrain factors, the number of canopy photons, and solar conditions significantly impact land cover classification for a complex terrain area.
引用
收藏
页数:5
相关论文
共 24 条
[1]   GlobeLand30: Operational global land cover mapping and big-data analysis [J].
Chen, Jun ;
Chen, Jin .
SCIENCE CHINA-EARTH SCIENCES, 2018, 61 (10) :1533-1534
[2]  
Deng Ou Deng Ou, 2012, Transactions of the Chinese Society of Agricultural Engineering, V28, P200
[3]  
Duong H., 2012, PROC ISPRS MIDTERM S, V36, P31
[4]   Multisource and Multitemporal Data Fusion in Remote Sensing A comprehensive review of the state of the art [J].
Ghamisi, Pedram ;
Rasti, Behnood ;
Yokoya, Naoto ;
Wang, Qunming ;
Hoefle, Bernhard ;
Bruzzone, Lorenzo ;
Bovolo, Francesca ;
Chi, Mingmin ;
Anders, Katharina ;
Gloaguen, Richard ;
Atkinson, Peter M. ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (01) :6-39
[5]   Land Cover Classification Using ICESat/GLAS Full Waveform Data [J].
Ghosh, S. ;
Nandy, S. ;
Patra, S. ;
Kushwaha, S. P. S. ;
Kumar, A. Senthil ;
Dadhwal, V. K. .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2017, 45 (02) :327-335
[6]   Theoretical surface type classifier based on a waveform model of a satellite laser altimeter and its performance in the north of Greenland [J].
Li, Song ;
Zhang, Wenhao ;
Ma, Yue ;
Wang, Xiao Hua ;
Yang, Fanlin ;
Su, Dianpeng .
APPLIED OPTICS, 2018, 57 (10) :2482-2489
[7]   Joint Use of ICESat/GLAS and Landsat Data in Land Cover Classification: A Case Study in Henan Province, China [J].
Liu, Caixia ;
Huang, Huabing ;
Gong, Peng ;
Wang, Xiaoyi ;
Wang, Jie ;
Li, Wenyu ;
Li, Congcong ;
Li, Zhan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (02) :511-522
[8]   Feasibility of Burned Area Mapping Based on ICESAT-2 Photon Counting Data [J].
Liu, Meng ;
Popescu, Sorin C. ;
Malambo, Lonesome .
REMOTE SENSING, 2020, 12 (01)
[9]  
[陆大进 Lu Dajin], 2021, [地球信息科学学报, Journal of Geo-Information Science], V23, P2086
[10]  
Ma, 2018, INFR LASER ENG, V47