MARSHALL-OLKIN LINDLEY-LOG-LOGISTIC DISTRIBUTION: MODEL, PROPERTIES AND APPLICATIONS

被引:5
作者
Moakofi, Thatayaone [1 ]
Oluyede, Broderick [1 ]
Makubate, Boikanyo [1 ]
机构
[1] Botswana Int Univ Sci & Technol, Math & Stat Sci, Plot 10071, Boseja, Palapye, Botswana
关键词
Lindley distribution; Weibull distribution; generalized distribution; maximum likelihood estimation; WEIBULL; FAMILY;
D O I
10.1515/ms-2021-0052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors introduce a new generalized distribution called the Marshall-Olkin Lindley-Log-logistic (MOLLLoG) distribution and discuss its distributional properties. The properties include hazard function, quantile function, moments, conditional moments, mean and median deviations, Bonferroni and Lorenz curves, distribution of the order statistics and Renyi entropy. A Monte Carlo simulation study was used to examine the bias, relative bias and mean square error of the maximum likelihood estimators. The betterness of the new distribution compared to other distributions is illustrated by means of two real life datasets. (C) 2021 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1269 / 1290
页数:22
相关论文
共 29 条
[1]   The Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate [J].
Afify, Ahmed Z. ;
Cordeiro, Gauss M. ;
Yousof, Haitham M. ;
Saboor, Abdus ;
Ortega, Edwin M. M. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02) :365-381
[2]  
[Anonymous], 1983, GRAPHICAL METHODS DA
[3]  
Barlow R.E., 1984, P C APPL STAT
[4]   General results for the Marshall and Olkin's family of distributions [J].
Barreto-Souza, Wagner ;
Lemonte, Artur J. ;
Cordeiro, Gauss M. .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2013, 85 (01) :3-21
[5]  
Chakraborty S., 2017, J DATA SCI, V15, P391, DOI [10.6339/JDS.201707_15(3).0003, DOI 10.6339/JDS.201707_15(3).0003]
[6]   A GENERAL-PURPOSE APPROXIMATE GOODNESS-OF-FIT TEST [J].
CHEN, GM ;
BALAKRISHNAN, N .
JOURNAL OF QUALITY TECHNOLOGY, 1995, 27 (02) :154-161
[7]   On the Marshall-Olkin extended Weibull distribution [J].
Cordeiro, Gauss M. ;
Lemonte, Artur J. .
STATISTICAL PAPERS, 2013, 54 (02) :333-353
[8]   Lindley distribution and its application [J].
Ghitany, M. E. ;
Atieh, B. ;
Nadarajah, S. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 78 (04) :493-506
[9]   Power Lindley distribution and associated inference [J].
Ghitany, M. E. ;
Al-Mutairi, D. K. ;
Balakrishnan, N. ;
Al-Enezi, L. J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 :20-33
[10]   Marshall-Olkin extended Weibull distribution and its application to censored data [J].
Ghitany, ME ;
Al-Hussaini, EK ;
Al-Jarallah, RA .
JOURNAL OF APPLIED STATISTICS, 2005, 32 (10) :1025-1034