Cross-Platform Evaluation of Commercially Targeted and Untargeted Metabolomics Approaches to Optimize the Investigation of Psychiatric Disease

被引:9
作者
Chaby, Lauren E. [1 ]
Lasseter, Heather C. [1 ]
Contrepois, Kevin [2 ]
Salek, Reza M. [3 ]
Turck, Christoph W. [4 ]
Thompson, Andrew [1 ]
Vaughan, Timothy [1 ]
Haas, Magali [1 ]
Jeromin, Andreas [1 ]
机构
[1] Cohen Vet Biosci, New York, NY 10018 USA
[2] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[3] WHO, Nutr & Metab Branch, Int Agcy Res Canc, 150 Cours Albert Thomas, F-69372 Lyon 08, France
[4] Max Planck Inst Psychiat Prote & Biomarkers, D-80804 Munich, Germany
关键词
posttraumatic stress disorder (PTSD); metabolomics; metabolites; lipidomics; ring trial; platform comparison; depression; mass spectrometry; nuclear magnetic resonance (NMR); liquid chromatography-mass spectrometry (LC-MS); POSTTRAUMATIC-STRESS-DISORDER; MASS-SPECTROMETRY; ASSOCIATION; METABOLITES; LIPIDOMICS; DISCOVERY; SAMPLES; RISK; PTSD;
D O I
10.3390/metabo11090609
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomics methods often encounter trade-offs between quantification accuracy and coverage, with truly comprehensive coverage only attainable through a multitude of complementary assays. Due to the lack of standardization and the variety of metabolomics assays, it is difficult to integrate datasets across studies or assays. To inform metabolomics platform selection, with a focus on posttraumatic stress disorder (PTSD), we review platform use and sample sizes in psychiatric metabolomics studies and then evaluate five prominent metabolomics platforms for coverage and performance, including intra-/inter-assay precision, accuracy, and linearity. We found performance was variable between metabolite classes, but comparable across targeted and untargeted approaches. Within all platforms, precision and accuracy were highly variable across classes, ranging from 0.9-63.2% (coefficient of variation) and 0.6-99.1% for accuracy to reference plasma. Several classes had high inter-assay variance, potentially impeding dissociation of a biological signal, including glycerophospholipids, organooxygen compounds, and fatty acids. Coverage was platform-specific and ranged from 16-70% of PTSD-associated metabolites. Non-overlapping coverage is challenging; however, benefits of applying multiple metabolomics technologies must be weighed against cost, biospecimen availability, platform-specific normative levels, and challenges in merging datasets. Our findings and open-access cross-platform dataset can inform platform selection and dataset integration based on platform-specific coverage breadth/overlap and metabolite-specific performance.
引用
收藏
页数:21
相关论文
共 58 条
[1]   Metabolomics Profile in Depression: A Pooled Analysis of 230 Metabolic Markers in 5283 Cases With Depression and 10,145 Controls [J].
Bot, Mariska ;
Milaneschi, Yuri ;
Al-Shehri, Tahani ;
Amin, Najaf ;
Garmaeva, Sanzhima ;
Onderwater, Gerrit L. J. ;
Pool, Rene ;
Thesing, Carisha S. ;
Vijfhuizen, Lisanne S. ;
Vogelzangs, Nicole ;
Arts, Ilja C. W. ;
Demirkan, Ayse ;
van Duijn, Cornelia ;
van Greevenbroek, Marleen ;
van der Kallen, Carla J. H. ;
Koehler, Sebastian ;
Ligthart, Lannie ;
van den Maagdenberg, M. J. M. ;
Mook-Kanamori, Dennis O. ;
de Mutsert, Renee ;
Tiemeier, Henning ;
Schram, Miranda T. ;
Stehouwer, Coen D. A. ;
Terwindt, Gisela M. ;
van Dijk, Ko Willems ;
Fu, Jingyuan ;
Zhernakova, Alexandra ;
Beekman, Marian ;
Slagboom, P. Eline ;
Boomsma, Dorret, I ;
Penninx, Brenda W. J. H. .
BIOLOGICAL PSYCHIATRY, 2020, 87 (05) :409-418
[2]   Kynurenine pathway metabolites and suicidality [J].
Bryleva, Elena Y. ;
Brundin, Lena .
NEUROPHARMACOLOGY, 2017, 112 :324-330
[3]   Reliability of Serum Metabolites over a Two-Year Period: A Targeted Metabolomic Approach in Fasting and Non-Fasting Samples from EPIC [J].
Carayol, Marion ;
Licaj, Idlir ;
Achaintre, David ;
Sacerdote, Carlotta ;
Vineis, Paolo ;
Key, Timothy J. ;
Moret, N. Charlotte Onland ;
Scalbert, Augustin ;
Rinaldi, Sabina ;
Ferrari, Pietro .
PLOS ONE, 2015, 10 (08)
[4]   Bridging Targeted and Untargeted Mass Spectrometry-Based Metabolomics via Hybrid Approaches [J].
Chen, Li ;
Zhong, Fanyi ;
Zhu, Jiangjiang .
METABOLITES, 2020, 10 (09) :1-19
[5]   Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma [J].
Contrepois, Kevin ;
Mahmoudi, Salah ;
Ubhi, Baljit K. ;
Papsdorf, Katharina ;
Hornburg, Daniel ;
Brunet, Anne ;
Snyder, Michael .
SCIENTIFIC REPORTS, 2018, 8
[6]   Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder [J].
Dean, Kelsey R. ;
Hammamieh, Rasha ;
Mellon, Synthia H. ;
Abu-Amara, Duna ;
Flory, Janine D. ;
Guffanti, Guia ;
Wang, Kai ;
Daigle, Bernie J., Jr. ;
Gautam, Aarti ;
Lee, Inyoul ;
Yang, Ruoting ;
Almli, Lynn M. ;
Bersani, F. Saverio ;
Chakraborty, Nabarun ;
Donohue, Duncan ;
Kerley, Kimberly ;
Kim, Taek-Kyun ;
Laska, Eugene ;
Lee, Min Young ;
Lindqvist, Daniel ;
Lori, Adriana ;
Lu, Liangqun ;
Misganaw, Burook ;
Muhie, Seid ;
Newman, Jennifer ;
Price, Nathan D. ;
Qin, Shizhen ;
Reus, Victor, I ;
Siegel, Carole ;
Somvanshi, Pramod R. ;
Thakur, Gunjan S. ;
Zhou, Yong ;
Hood, Leroy ;
Ressler, Kerry J. ;
Wolkowitz, Owen M. ;
Yehuda, Rachel ;
Jett, Marti ;
Doyle, Francis J., III ;
Marmar, Charles .
MOLECULAR PSYCHIATRY, 2020, 25 (12) :3337-3349
[7]   Mass spectrometry-based metabolomics [J].
Dettmer, Katja ;
Aronov, Pavel A. ;
Hammock, Bruce D. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (01) :51-78
[8]   Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling [J].
Di Guida, Riccardo ;
Engel, Jasper ;
Allwood, J. William ;
Weber, Ralf J. M. ;
Jones, Martin R. ;
Sommer, Ulf ;
Viant, Mark R. ;
Dunn, Warwick B. .
METABOLOMICS, 2016, 12 (05)
[9]   Quality assurance procedures for mass spectrometry untargeted metabolomics. a review [J].
Dudzik, Danuta ;
Barbas-Bernardos, Cecilia ;
Garcia, Antonia ;
Barbas, Coral .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2018, 147 :149-173
[10]   NMR Spectroscopy for Metabolomics Research [J].
Emwas, Abdul-Hamid ;
Roy, Raja ;
McKay, Ryan T. ;
Tenori, Leonardo ;
Saccenti, Edoardo ;
Gowda, G. A. Nagana ;
Raftery, Daniel ;
Alahmari, Fatimah ;
Jaremko, Lukasz ;
Jaremko, Mariusz ;
Wishart, David S. .
METABOLITES, 2019, 9 (07)