On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries

被引:38
|
作者
Ipek, Ahmet [1 ]
机构
[1] Mustafa Kemal Univ, Fac Art & Sci, Dept Math, Antakya, Turkey
关键词
Spectral norm; Circulant matrices; Fibonacci numbers; Lucas numbers;
D O I
10.1016/j.amc.2010.12.094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is an improving of the work [S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comp. 160 (2005), 125-132], in which the lower and upper bounds for the spectral norms of the matrices A = [F-(mod(j-i,F-n))](i,j-1)(n) and B = [L-(mod(j-i,L-n))](i,j-1)(n) are established. In this new paper, we compute the spectral norms of these matrices. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:6011 / 6012
页数:2
相关论文
共 50 条
  • [41] On the spectral norms of some special g-circulant matrices
    Shen, Shou-Qiang
    Liu, Wei-Jun
    He, Jun-Jie
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (05): : 1441 - 1448
  • [42] On Fibonacci and Lucas Numbers of the Form cx(2)
    Keskin, Refik
    Yosma, Zafer
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (09)
  • [44] On series involving Fibonacci and Lucas numbers I
    Duverney, Daniel
    Shiokawa, Iekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 62 - +
  • [45] An Alternating Sum of Fibonacci and Lucas Numbers of Orderk
    Dafnis, Spiros D.
    Philippou, Andreas N.
    Livieris, Ioannis E.
    MATHEMATICS, 2020, 8 (09)
  • [46] On the representation of Fibonacci and Lucas numbers in an integer base
    Bugeaud Y.
    Cipu M.
    Mignotte M.
    Annales mathématiques du Québec, 2013, 37 (1) : 31 - 43
  • [47] Representation of Integers as Sums of Fibonacci and Lucas Numbers
    Park, Ho
    Cho, Bumkyu
    Cho, Durkbin
    Cho, Yung Duk
    Park, Joonsang
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 8
  • [48] Some Identities Involving Square of Fibonacci Numbers and Lucas Numbers
    LIU Duan-sen
    数学季刊, 2004, (01) : 67 - 68
  • [49] Sums of products of generalized Fibonacci and Lucas numbers
    Belbachir, Hacene
    Bencherif, Farid
    ARS COMBINATORIA, 2013, 110 : 33 - 43
  • [50] Three identities concerning Fibonacci and Lucas numbers
    Keskin, Refik
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (05) : 44 - 48