Modeling Climate Impacts on Tree Growth to Assess Tree Vulnerability to Drought During Forest Dieback

被引:14
作者
Valeriano, Cristina [1 ,2 ]
Gazol, Antonio [1 ]
Colangelo, Michele [1 ,3 ]
Gonzalez de Andres, Ester [1 ]
Julio Camarero, J. [1 ]
机构
[1] Inst Pirena Ecol IPE CSIC, Zaragoza, Spain
[2] Univ Politecn Madrid, Dept Sistemas Nat & Hist Forestal, Madrid, Spain
[3] Univ Basilicata, Sch Agr Forest Food & Environm Sci, Potenza, Italy
来源
FRONTIERS IN PLANT SCIENCE | 2021年 / 12卷
关键词
climate warming; dendroecology; die-off; growth decline; process-based growth model; Pinus pinaster; tree rings; INTRAANNUAL DENSITY-FLUCTUATIONS; PINUS-PINASTER; MORTALITY; MECHANISMS; RESPONSES; DECLINE; STRESS;
D O I
10.3389/fpls.2021.672855
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Forest dieback because of drought is a global phenomenon threatening particular tree populations. Particularly vulnerable stands are usually located in climatically stressing locations such as xeric sites subjected to seasonal drought. These tree populations show a pronounced loss of vitality, growth decline, and high mortality in response to extreme climate events such as heat waves and droughts. However, dieback events do not uniformly affect stands, with some trees showing higher symptoms of drought vulnerability than other neighboring conspecifics. In this study, we investigated if trees showing different vulnerabilities to dieback showed lower growth rates (Grs) and higher sensitivities to the climate in the past using dendroecology and the Vaganov-Shashkin (VS) process-based growth model. We studied two Pinus pinaster stands with contrasting Grs showing recent dieback in the Iberian System, north-eastern Spain. We compared coexisting declining (D) and non-declining (ND) trees with crown defoliation values above and below the 50% threshold, respectively. The mean growth rate was lower in D than in ND trees in the two stands. The two vigor classes showed a growth divergence prior to the dieback onset and different responsiveness to climate. The ND trees were more responsive to changes in spring water balance and soil moisture than D trees, indicating a loss of growth responsiveness to the climate in stressed trees. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. The presented comparisons indicated different stand vulnerabilities to drought contingent on-site conditions. Further research should investigate the role played by environmental conditions and individual features such as access to soil water or hydraulic traits and implement them in process-based growth models to better forecast dieback.
引用
收藏
页数:13
相关论文
共 69 条
  • [1] A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
    Adams, Henry D.
    Zeppel, Melanie J. B.
    Anderegg, William R. L.
    Hartmann, Henrik
    Landhausser, Simon M.
    Tissue, David T.
    Huxman, Travis E.
    Hudson, Patrick J.
    Franz, Trenton E.
    Allen, Craig D.
    Anderegg, Leander D. L.
    Barron-Gafford, Greg A.
    Beerling, David J.
    Breshears, David D.
    Brodribb, Timothy J.
    Bugmann, Harald
    Cobb, Richard C.
    Collins, Adam D.
    Dickman, L. Turin
    Duan, Honglang
    Ewers, Brent E.
    Galiano, Lucia
    Galvez, David A.
    Garcia-Forner, Nuria
    Gaylord, Monica L.
    Germino, Matthew J.
    Gessler, Arthur
    Hacke, Uwe G.
    Hakamada, Rodrigo
    Hector, Andy
    Jenkins, Michael W.
    Kane, Jeffrey M.
    Kolb, Thomas E.
    Law, Darin J.
    Lewis, James D.
    Limousin, Jean-Marc
    Love, David M.
    Macalady, Alison K.
    Martinez-Vilalta, Jordi
    Mencuccini, Maurizio
    Mitchell, Patrick J.
    Muss, Jordan D.
    O'Brien, Michael J.
    O'Grady, Anthony P.
    Pangle, Robert E.
    Pinkard, Elizabeth A.
    Piper, Frida I.
    Plaut, Jennifer A.
    Pockman, William T.
    Quirk, Joe
    [J]. NATURE ECOLOGY & EVOLUTION, 2017, 1 (09): : 1285 - 1291
  • [2] On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene
    Allen, Craig D.
    Breshears, David D.
    McDowell, Nate G.
    [J]. ECOSPHERE, 2015, 6 (08):
  • [3] A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests
    Allen, Craig D.
    Macalady, Alison K.
    Chenchouni, Haroun
    Bachelet, Dominique
    McDowell, Nate
    Vennetier, Michel
    Kitzberger, Thomas
    Rigling, Andreas
    Breshears, David D.
    Hogg, E. H.
    Gonzalez, Patrick
    Fensham, Rod
    Zhang, Zhen
    Castro, Jorge
    Demidova, Natalia
    Lim, Jong-Hwan
    Allard, Gillian
    Running, Steven W.
    Semerci, Akkin
    Cobb, Neil
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) : 660 - 684
  • [4] Allen R. G., 1998, FAO Irrigation and Drainage Paper
  • [5] Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models
    Anderegg, W. R. L.
    Schwalm, C.
    Biondi, F.
    Camarero, J. J.
    Koch, G.
    Litvak, M.
    Ogle, K.
    Shaw, J. D.
    Shevliakova, E.
    Williams, A. P.
    Wolf, A.
    Ziaco, E.
    Pacala, S.
    [J]. SCIENCE, 2015, 349 (6247) : 528 - 532
  • [6] Consequences of widespread tree Mortality triggered by drought and temperature stress
    Anderegg, William R. L.
    Kane, Jeffrey M.
    Anderegg, Leander D. L.
    [J]. NATURE CLIMATE CHANGE, 2013, 3 (01) : 30 - 36
  • [7] Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites
    Bakker, M. R.
    Augusto, L.
    Achat, D. L.
    [J]. PLANT AND SOIL, 2006, 286 (1-2) : 37 - 51
  • [8] Bogino SM, 2008, ANN FOREST SCI, V65, DOI 10.1051/forest:2008025
  • [9] Visualization of Regression Models Using visreg
    Breheny, Patrick
    Burchett, Woodrow
    [J]. R JOURNAL, 2017, 9 (02): : 56 - 71
  • [10] A dendrochronology program library in R (dplR)
    Bunn, Andrew G.
    [J]. DENDROCHRONOLOGIA, 2008, 26 (02) : 115 - 124